Busca avançada
Ano de início
Entree


A Physics-Informed Neural Operator for the Simulation of Surface Waves

Texto completo
Autor(es):
Mostrar menos -
Mathias, Marlon S. ; Netto, Caio F. D. ; Moreno, Felipe M. ; Coelho, Jefferson F. ; de Freitas, Lucas P. ; de Barros, Marcel R. ; de Mello, Pedro C. ; Dottori, Marcelo ; Cozman, Fabio G. ; Costa, Anna H. R. ; Nogueira Junior, Alberto C. ; Gomi, Edson S. ; Tannuri, Eduardo A.
Número total de Autores: 13
Tipo de documento: Artigo Científico
Fonte: JOURNAL OF OFFSHORE MECHANICS AND ARCTIC ENGINEERING-TRANSACTIONS OF THE ASME; v. 146, n. 6, p. 10-pg., 2024-12-01.
Resumo

We develop and implement a neural operator (NOp) to predict the evolution of waves on the surface of water. The NOp uses a graph neural network (GNN) to connect randomly sampled points on the water surface and exchange information between them to make the prediction. Our main contribution is adding physical knowledge to the implementation, which allows the model to be more general and able to be used in domains of different geometries with no retraining. Our implementation also takes advantage of the fact that the governing equations are independent of rotation and translation to make training easier. In this work, the model is trained with data from a single domain with fixed dimensions and evaluated in domains of different dimensions with little impact to performance. (AU)

Processo FAPESP: 19/07665-4 - Centro de Inteligência Artificial
Beneficiário:Fabio Gagliardi Cozman
Modalidade de apoio: Auxílio à Pesquisa - Programa eScience e Data Science - Centros de Pesquisa em Engenharia
Processo FAPESP: 20/16746-5 - Physics-informed machine learning aplicado para previsões de condições metoceânicas
Beneficiário:Felipe Marino Moreno
Modalidade de apoio: Bolsas no Brasil - Doutorado