Busca avançada
Ano de início
Entree


IoDAPM: A Reinforcement Learning Approach for Dynamic Assignment of Protection Mechanisms in IoD

Texto completo
Autor(es):
Svaigen, Alisson R. ; Boukerche, Azzedine ; Ruiz, Linnyer B. ; Loureiro, Antonio A. F.
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: PROCEEDINGS OF THE INT'L ACM CONFERENCE ON MODELING, ANALYSIS AND SIMULATION OF WIRELESS AND MOBILE SYSTEMS, MSWIM 2023; v. N/A, p. 8-pg., 2023-01-01.
Resumo

Location Privacy Protection Mechanisms (LPPMs) have been designed to enhance privacy in the Internet of Drones (IoD), however, they present suitable privacy levels only in specific network conditions. Also, they can lead to a lack of Quality of Service (QoS) if applied in unfavorable conditions. Thus, the dynamic assignment of the most suitable LPPM, given the IoD conditions, is a significant challenge. Reinforcement Learning (RL) represents a useful concept to handle this problem, given its exploratory characteristics and being able to enhance the knowledge about network dynamics. In this study, we propose IoDAPM, an RL-based approach for the Dynamic Assignment of Protection Mechanisms in IoD. Through simulations, we extensively trained the RL-based model, exploring the possible IoD network conditions. With this model, we carried out a comparative evaluation of existing LPPMs. The results highlighted that IoDAPM outperforms the compared mechanisms considering the QoS, providing enhanced performance regarding location privacy, energy efficiency, and flight delay. (AU)

Processo FAPESP: 15/24494-8 - Comunicação e processamento de big data em nuvens e névoas computacionais
Beneficiário:Nelson Luis Saldanha da Fonseca
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 18/23064-8 - Mobilidade na computação urbana: caracterização, modelagem e aplicações (MOBILIS)
Beneficiário:Antonio Alfredo Ferreira Loureiro
Modalidade de apoio: Auxílio à Pesquisa - Temático