Busca avançada
Ano de início
Entree


Explainable Machine Learning to Unveil Detection Mechanisms with Au Nanoisland-Based Surface-Enhanced Raman Scattering for SARS-CoV-2 Antigen Detection

Texto completo
Autor(es):
Pazin, Wallance Moreira ; Furini, Leonardo Negri ; Braz, Daniel C. ; Popolin-Neto, Mario ; Fernandes, Jose Diego ; Constantino, Carlos J. Leopoldo ; Oliveira Jr, Osvaldo N.
Número total de Autores: 7
Tipo de documento: Artigo Científico
Fonte: ACS APPLIED NANO MATERIALS; v. 7, n. 2, p. 8-pg., 2024-01-05.
Resumo

In this study, we introduce a simplified surface-enhanced Raman scattering (SERS) nanobiosensor for precise detection of a SARS-CoV-2 antigen, leveraging supervised machine learning approaches. The biosensor was made with Au nanoislands conjugated with a 4-aminothiophenol Raman reporter and an anti-SARS-CoV-2 antibody. Through the integration of feature selection and learning algorithms, namely, logistic regression, linear discriminant analysis, and support vector machine, we achieved high accuracies ranging from 96 to 100% in antigen detection. Furthermore, we identified the underlying detection mechanisms by employing the concept of multidimensional calibration space, which is based on decision trees and random forest algorithms. This analysis with explainable machine learning allowed us to gain insights into the reasons why our simplified nanobiosensor exhibits lower sensitivity compared with that of the previous sandwich-type immunosensors for SARS-CoV-2. The results presented here emphasize the potential of supervised machine learning in SERS biosensing, which can be applied to any type of diagnostics. (AU)

Processo FAPESP: 20/12129-1 - Imunoensaio para diagnóstico da COVID-19 usando espectroscopia de espalhamento Raman amplificado em superfície (SERS)
Beneficiário:Wallance Moreira Pazin
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 20/12060-1 - EGOFETs e diodo Schottky: influência do arranjo supramolecular sobre as propriedades elétricas
Beneficiário:José Diego Fernandes Dias
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 18/22214-6 - Rumo à convergência de tecnologias: de sensores e biossensores à visualização de informação e aprendizado de máquina para análise de dados em diagnóstico clínico
Beneficiário:Osvaldo Novais de Oliveira Junior
Modalidade de apoio: Auxílio à Pesquisa - Temático