Busca avançada
Ano de início
Entree


MESFLA: Model Efficiency through Selective Federated Learning Algorithm

Texto completo
Autor(es):
Barros, Alex ; Veiga, Rafael ; Morais, Renan ; Rosario, Denis ; Cerqueira, Eduardo
Número total de Autores: 5
Tipo de documento: Artigo Científico
Fonte: JOURNAL OF INTERNET SERVICES AND APPLICATIONS; v. 15, n. 1, p. 12-pg., 2024-01-01.
Resumo

Integrating big data and deep learning across various applications has significantly enhanced intelligence and efficiency in our daily lives. However, it also requires extensive data sharing, raising significant communication and privacy concerns. In this context, Federated Learning (FL) emerges as a promising solution to enable collaborative model training while preserving the privacy and autonomy of participating clients. FL facilitates collaborative model training by enabling data to be trained locally on devices, eliminating the need for individual information sharing among clients. A client selection mechanism strategically chooses a subset of participating clients to contribute to the model training in each learning round. However, an efficient selection of clients to participate in the training process directly impacts model convergence/accuracy and the overall communication load on the network. In addition, FL faces challenges when dealing with non-Independent and Non-Identically Distributed (non-IID) data, where the diversity in data distribution often leads to reduced classification accuracy. Hence, designing an efficient client selection mechanism in a scenario with non-IID data is essential, but it is still an open issue. This article proposes a Model Efficiency through Selective Federated Learning Algorithm called MESFLA. The mechanism employs a Centered Kernel Alignment (CKA) algorithm to search for similar models based on data weight or similarity between models, i.e., grouping participants with comparable data distributions or learning objectives. Afterward, MESFLA selects the clients with more relevance in each group based on data weight and entropy. Our comprehensive evaluation across multiple datasets, including MNIST, CIFAR-10, and CIFAR-100, demonstrates MESFLA's superior performance over traditional FL algorithms. Our results show an accuracy improvement and a minor loss in each client aggregation of the new global model sent to clients with a difference of 3 rounds using the Data Weight in comparison with the other selection methods. (AU)

Processo FAPESP: 23/00673-7 - Inteligência distribuída em redes de comunicação e internet das coisas
Beneficiário:Nelson Luis Saldanha da Fonseca
Modalidade de apoio: Auxílio à Pesquisa - Temático