Busca avançada
Ano de início
Entree


Texto completo
Autor(es):
Pimenta, Ricardo Jose Gonzaga ; Aono, Alexandre Hild ; Burbano, Roberto Carlos Villavicencio ; Silva, Marcel Fernando da ; Anjos, Ivan Antonio dos ; Landell, Marcos Guimaraes de Andrade ; Goncalves, Marcos Cesar ; Pinto, Luciana Rossini ; Souza, Anete Pereira de
Número total de Autores: 9
Tipo de documento: Artigo Científico
Fonte: CROP JOURNAL; v. 11, n. 6, p. 11-pg., 2023-12-01.
Resumo

Sugarcane mosaic virus (SCMV) is the main etiological agent of sugarcane mosaic disease, which affects sugarcane and other grass crops. Despite the extensive characterization of quantitative trait loci control-ling resistance to SCMV in maize, the genetic basis of this trait in sugarcane is largely unexplored. Here, a genome-wide association study was performed and machine learning coupled with feature selection was used for genomic prediction of resistance to SCMV in a diverse sugarcane panel. Nine single-nucleotide polymorphisms (SNPs) explained up to 29.9% of the observed phenotypic variance and a 73-SNP set pre-dicted resistance with high accuracy, precision, recall, and F1 scores (the harmonic mean of precision and recall). Both marker sets were validated in additional sugarcane genotypes, in which the SNPs explained up to 23.6% of the phenotypic variation and predicted resistance with a maximum accuracy of 69.1%. Synteny analyses suggested that the gene responsible for the majority of SCMV resistance in maize is absent in sugarcane, explaining why this major resistance source has not been identified in this crop. Finally, using sugarcane RNA-Seq data, markers associated with resistance to SCMV were annotated, and a gene coexpression network was constructed to identify the predicted biological processes involved in resistance. This network allowed the identification of candidate resistance genes and confirmed the involvement of stress responses, photosynthesis, and the regulation of transcription and translation in resistance to SCMV. These results provide a practical marker-assisted breeding approach for sugarcane and identify target genes for future studies of SCMV resistance.(c) 2023 Crop Science Society of China and Institute of Crop Science, CAAS. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). (AU)

Processo FAPESP: 19/03232-6 - Seleção genômica ampla em cana-de-açúcar via aprendizado de máquina e redes complexas para caracteres de importância econômica
Beneficiário:Alexandre Hild Aono
Modalidade de apoio: Bolsas no Brasil - Doutorado Direto
Processo FAPESP: 19/21682-9 - Mapeamento associativo e transcriptômica na investigação da resistência da cana-de-açúcar ao vírus do amarelecimento foliar
Beneficiário:Ricardo José Gonzaga Pimenta
Modalidade de apoio: Bolsas no Brasil - Doutorado Direto
Processo FAPESP: 18/18588-8 - Mapeamento de associação em cana-de-açúcar visando à tolerância ao vírus do amarelecimento foliar
Beneficiário:Ricardo José Gonzaga Pimenta
Modalidade de apoio: Bolsas no Brasil - Mestrado