Busca avançada
Ano de início
Entree


A Novel Unsupervised Capacity Identification Approach to Deal With Redundant Criteria in Multicriteria Decision Making Problems

Texto completo
Autor(es):
Pelegrina, Guilherme Dean ; Duarte, Leonardo Tomazeli
Número total de Autores: 2
Tipo de documento: Artigo Científico
Fonte: IEEE TRANSACTIONS ON FUZZY SYSTEMS; v. 32, n. 12, p. 6-pg., 2024-12-01.
Resumo

The use of the Choquet integral in multicriteria decision making problems has gained attention in the last two decades. Despite of its usefulness, there is the issue of how to define the Choquet integral parameters, called capacity coefficients, specially the ones associated with coalitions of criteria. A possible approach to address this issue is based on unsupervised learning, which aims to define such parameters with the goal of mitigating undesirable effects provided by intercriteria relations. However, current unsupervised approaches present some drawbacks, as there is no guarantee that the parameters are equally prioritized in the learning procedure. In this article, we propose a novel unsupervised capacity identification approach which ensures a fair learning for all parameters. Moreover, in comparison with the existing methods, our proposal is less complex in terms of optimization, as it is based on a linear formulation. Experimental results in both synthetic and real datasets attest the applicability of our proposal. (AU)

Processo FAPESP: 20/09838-0 - BI0S - Brazilian Institute of Data Science
Beneficiário:João Marcos Travassos Romano
Modalidade de apoio: Auxílio à Pesquisa - Programa Centros de Pesquisa em Engenharia
Processo FAPESP: 21/11086-0 - Interpretabilidade e equidade em aprendizado de máquina: funções baseadas na capacidade e índices de interação
Beneficiário:Guilherme Dean Pelegrina
Modalidade de apoio: Bolsas no Exterior - Estágio de Pesquisa - Pós-Doutorado
Processo FAPESP: 20/10572-5 - Novas abordagens para lidar com imparcialidade e transparência em problemas de aprendizado de máquina
Beneficiário:Guilherme Dean Pelegrina
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado