Busca avançada
Ano de início
Entree


Universal new physics latent space

Texto completo
Autor(es):
Hallin, Anna ; Kasieczka, Gregor ; Kraml, Sabine ; Lessa, Andre ; Moureaux, Louis ; von Schwartz, Tore ; Shih, David
Número total de Autores: 7
Tipo de documento: Artigo Científico
Fonte: PHYSICAL REVIEW D; v. 111, n. 1, p. 17-pg., 2025-01-09.
Resumo

We develop a machine learning method for mapping data originating from both Standard Model processes and various theories beyond the Standard Model into a unified representation (latent) space while conserving information about the relationship between the underlying theories. We apply our method to three examples of new physics at the LHC of increasing complexity, showing that models can be clustered according to their LHC phenomenology: different models are mapped to distinct regions in latent space, while indistinguishable models are mapped to the same region. This opens interesting new avenues on several fronts, such as model discrimination, selection of representative benchmark scenarios, and identifying gaps in the coverage of model space. (AU)

Processo FAPESP: 21/01089-1 - Cherenkov Telescope Array: construção e primeiras descobertas
Beneficiário:Luiz Vitor de Souza Filho
Modalidade de apoio: Auxílio à Pesquisa - Projetos Especiais
Processo FAPESP: 18/25225-9 - Centro de Pesquisa e Análise de São Paulo
Beneficiário:Sergio Ferraz Novaes
Modalidade de apoio: Auxílio à Pesquisa - Projetos Especiais