Busca avançada
Ano de início
Entree


The Performance of Transferability Metrics Does Not Translate to Medical Tasks

Texto completo
Autor(es):
Chaves, Levy ; Bissoto, Alceu ; Valle, Eduardo ; Avila, Sandra
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: DOMAIN ADAPTATION AND REPRESENTATION TRANSFER, DART 2023; v. 14293, p. 10-pg., 2024-01-01.
Resumo

Transfer learning boosts the performance of medical image analysis by enabling deep learning (DL) on small datasets through the knowledge acquired from large ones. As the number of DL architectures explodes, exhaustively attempting all candidates becomes unfeasible, motivating cheaper alternatives for choosing them. Transferability scoring methods emerge as an enticing solution, allowing to efficiently calculate a score that correlates with the architecture accuracy on any target dataset. However, since transferability scores have not been evaluated on medical datasets, their use in this context remains uncertain, preventing them from benefiting practitioners. We fill that gap in this work, thoroughly evaluating seven transferability scores in three medical applications, including out-of-distribution scenarios. Despite promising results in general-purpose datasets, our results show that no transferability score can reliably and consistently estimate target performance in medical contexts, inviting further work in that direction. (AU)

Processo FAPESP: 13/08293-7 - CECC - Centro de Engenharia e Ciências Computacionais
Beneficiário:Munir Salomao Skaf
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs
Processo FAPESP: 20/09838-0 - BI0S - Brazilian Institute of Data Science
Beneficiário:João Marcos Travassos Romano
Modalidade de apoio: Auxílio à Pesquisa - Programa Centros de Pesquisa em Engenharia
Processo FAPESP: 22/09606-8 - Compreensão do papel de atalhos e mudanças de distribuição para generalização de redes neurais profundas
Beneficiário:Alceu Emanuel Bissoto
Modalidade de apoio: Bolsas no Exterior - Estágio de Pesquisa - Doutorado
Processo FAPESP: 19/19619-7 - Geração ilimitada de imagens de lesões de pele usando redes generativas adversariais
Beneficiário:Alceu Emanuel Bissoto
Modalidade de apoio: Bolsas no Brasil - Doutorado