| Texto completo | |
| Autor(es): |
Chemetov, Nikolai, V
;
Cipriano, Fernanda
Número total de Autores: 2
|
| Tipo de documento: | Artigo Científico |
| Fonte: | SIAM JOURNAL ON MATHEMATICAL ANALYSIS; v. 57, n. 1, p. 40-pg., 2025-01-01. |
| Resumo | |
We consider a velocity tracking problem for stochastic Navier-Stokes equations in a 2D-bounded domain. The control acts on the boundary through an injection-suction device with uncertainty, which acts in accordance with the nonhomogeneous Navier-slip boundary conditions. After establishing a suitable stability result for the solution of the stochastic state equation, we prove the well-posedness of the stochastic linearized state equation and show that the Ga<^>\teaux derivative of the control-to-state mapping corresponds to the unique solution of the linearized equation. Next, we study the stochastic backward adjoint equation and establish a duality relation between the solutions of the forward linearized equation and the backward adjoint equation. Finally, we derive the first-order optimality conditions. (AU) | |
| Processo FAPESP: | 23/05271-4 - Problema de controlo ótimo através da fronteira para equações de Navier-Stokes estocásticas |
| Beneficiário: | Nikolai Vasilievich Chemetov |
| Modalidade de apoio: | Auxílio à Pesquisa - Pesquisador Visitante - Internacional |
| Processo FAPESP: | 21/03758-8 - Problemas matemáticos em dinâmica de fluidos |
| Beneficiário: | Nikolai Vasilievich Chemetov |
| Modalidade de apoio: | Auxílio à Pesquisa - Regular |