Busca avançada
Ano de início
Entree


Modeling and Predicting Crimes in the City of Sao Paulo Using Graph Neural Networks

Texto completo
Autor(es):
Hassan, Waqar ; Cabral, Marvin Mendes ; Ramos, Thiago Rodrigo ; Filho, Antonio Castelo ; Nonato, Luis Gustavo
Número total de Autores: 5
Tipo de documento: Artigo Científico
Fonte: INTELLIGENT SYSTEMS, BRACIS 2024, PT III; v. 15414, p. 15-pg., 2025-01-01.
Resumo

Crime prediction is a critical research area for enhancing public safety and optimizing law enforcement resource allocation, and machine learning techniques have had a significant impact in this field. Traditional machine learning models have long struggled to capture complex crime patterns, primarily due to the intricate interdependence of spatial and temporal data. However, recent advancements in machine learning, particularly with Graph Neural Networks (GNNs), offer a new perspective. GNNs have demonstrated remarkable success in various applications and they can also play a significant role in crime analysis and prediction. Therefore, in this work, we explore such a potential by examining two distinct spatiotemporal GNN architectures, namely Dynamic Self-Attention Network (DySAT) and Evolving Graph Convolutional Network (EvolveGCN), assessing and comparing their effectiveness for crime prediction. Moreover, we propose a data modeling framework that integrates crime, street map graphs, and urban data, which is fundamental to properly train the GNN models. As far as we know, there is no consolidated methodology to integrate those three modalities of data, being a relevant contribution of this work. Our findings underscore the effectiveness of GNNs in crime prediction tasks, offering valuable insights for researchers and practitioners in the field of crime prevention and public safety enhancement. (AU)

Processo FAPESP: 23/15618-1 - Unificando Representações Geoespaciais e Mapeamento Latente de Crimes sob Uma Perspectiva Computacional e Sócio-Analítica
Beneficiário:Thiago Rodrigo Ramos
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 22/09091-8 - Criminalidade, insegurança e legitimidade: uma abordagem transdisciplinar
Beneficiário:Luis Gustavo Nonato
Modalidade de apoio: Auxílio à Pesquisa - Programa eScience e Data Science - Temático
Processo FAPESP: 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria
Beneficiário:Francisco Louzada Neto
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs
Processo FAPESP: 23/16334-7 - Mapeamento Dinâmico de Crimes Urbanos: Integrando Análise Espaço-Temporal para Modelagem Preditiva
Beneficiário:Waqar Hassan
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado