Busca avançada
Ano de início
Entree


Load Model Identification Through a Hybrid Approach

Texto completo
Autor(es):
Jollies, Gabriel J. N. ; Lemes, Francisco R. ; Cari, Elmer P. T.
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: 2019 IEEE CANADIAN CONFERENCE OF ELECTRICAL AND COMPUTER ENGINEERING, CCECE; v. N/A, p. 4-pg., 2019-01-01.
Resumo

This paper proposes a hybrid approach to estimate the parameters of Z-IM Load Model from on-line measurements obtained from tap changes of transformers. For this aim, the model equations were linearized to use the information provided by small disturbances. The approach proposed applies a heuristic (Mean Variance Mapping Optimization) and a nonlinear (Trajectory Sensitivity) methods in cascade to optimize convergence. Simulation results shows the adequacy of the hybrid method for load model. The entire process took, in average, 24 seconds to converge. All the codes used for this work were written in Python 2.7. (AU)

Processo FAPESP: 17/09208-4 - Método híbrido para estimar parâmetros de usinas fotovoltaicas
Beneficiário:Elmer Pablo Tito Cari
Modalidade de apoio: Auxílio à Pesquisa - Regular