| Texto completo | |
| Autor(es): Mostrar menos - |
Araujo, Anna Luiza Damaceno
;
Sperandio, Marcelo
;
Calabrese, Giovanna
;
Faria, Sarah S.
;
Cardenas, Diego Armando Cardona
;
Martins, Manoela Domingues
;
Saldivia-Siracusa, Cristina
;
Giraldo-Roldan, Daniela
;
Pedroso, Caique Mariano
;
Vargas, Pablo Agustin
;
Lopes, Marcio Ajudarte
;
Santos-Silva, Alan Roger
;
Kowalski, Luiz Paulo
;
Moraes, Matheus Cardoso
Número total de Autores: 14
|
| Tipo de documento: | Artigo Científico |
| Fonte: | ORAL SURGERY ORAL MEDICINE ORAL PATHOLOGY ORAL RADIOLOGY; v. 140, n. 1, p. 10-pg., 2025-07-01. |
| Resumo | |
Background. Machine learning techniques hold significant potential to support the diagnosis and prognosis of diseases. However, the success of these approaches is heavily dependent on rigorous data acquisition, preprocessing and data organization. Methods. This article reviews the literature to evaluate key factors in dataset construction, focusing on data structure, preprocessing, and data organization, particularly in the context of imaging data. Results. The main issues with data construction when dealing with medical applications are noise (incorrect or irrelevant data), sparsity/ limited availability, representativeness/variability, and data imbalance (uneven class distribution).While preprocessing steps prepare the data to be suitable for the models, data organization focuses in improving data arranging to increase the model performance. Additionally, the impact of CNN complexity in processing balanced, imbalanced, and complex datasets shows that complex CNNs are not always the optimal choice for every classification problem. Conclusion. By integrating knowledge from Health Sciences and Biomedical Engineering, we aim to enhance healthcare professionals' understanding of machine learning for image analysis in Oral Medicine and Pathology. This encourages their involvement in patient recruitment and data acquisition, broadening their roles and significantly contributing to the creation of well-characterized datasets for future research and applications. (Oral Surg Oral Med Oral Pathol Oral Radiol 2025;140:79-88) (AU) | |
| Processo FAPESP: | 21/14585-7 - Inteligência artificial aplicada ao diagnóstico clínico e histopatológico do Câncer de Cabeça e Pescoço |
| Beneficiário: | Anna Luiza Damaceno Araujo |
| Modalidade de apoio: | Bolsas no Brasil - Pós-Doutorado |
| Processo FAPESP: | 22/07276-0 - Preditores clinicopatológicos e digitais de recorrência e malignização da leucoplasia oral e da leucoplasia verrucosa proliferativa: um estudo clínico adjunto ao uso da inteligência artificial |
| Beneficiário: | Caique Mariano Pedroso |
| Modalidade de apoio: | Bolsas no Brasil - Doutorado |
| Processo FAPESP: | 22/13069-8 - Inteligência artificial no diagnóstico clínico e histopatológico de carcinoma espinocelular oral incipiente: um estudo multicêntrico internacional |
| Beneficiário: | Cristina Saldivia Siracusa |
| Modalidade de apoio: | Bolsas no Brasil - Doutorado |