| Texto completo | |
| Autor(es): |
De Camargo, Andre Pierro
Número total de Autores: 1
|
| Tipo de documento: | Artigo Científico |
| Fonte: | Mathematics of Computation; v. N/A, p. 24-pg., 2025-07-18. |
| Resumo | |
We prove that, for x > q (x real), uniformly in q >= 2, phi(q)/q divided by & sum;j <= x(j,q)=1 mu(j)/j divided by divided by log(x/q) <= 0.3055. The constant 0.3055 is optimal up to the third decimal place. This answers a question of Ramare [Math. Comp. 84 (2015), pp. 1359-1387]. Sharper results are obtained for larger integers q. Similar results are obtained for the sums & sum; (j <= x (j,q )=1) mu (j). (AU) | |
| Processo FAPESP: | 22/16222-1 - Problemas de divisão sobre sequências especiais |
| Beneficiário: | André Pierro de Camargo |
| Modalidade de apoio: | Bolsas no Exterior - Pesquisa |