Busca avançada
Ano de início
Entree


Artificial Intelligence in Data Science: Evaluating Forecasting Models for Solar Energy in the Amazon Basin

Texto completo
Autor(es):
Marques, Andre Luis Ferreira ; Sbragio, Ricardo ; Correa, Pedro Luiz Pizzigatti ; Martins, Marcelo Ramos
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: IEEE ACCESS; v. 13, p. 14-pg., 2025-01-01.
Resumo

Forecasting models employing machine learning (ML) and deep learning (DL) have become fundamental for assessing the technical feasibility of renewable energy systems. Among these, solar energy stands out as a renewable energy option, particularly relevant for supporting the preservation of the Amazon rainforest. This study introduces a novel approach using ML and DL methods-integrated with Universal Kriging and Holt-Winters (time series) models - to forecast solar irradiance (kWh/m(2)) in cities across the state of Amazonas. The analysis is grounded in the Data Science cycle, with input data sourced from both ground stations and satellite products. Forecasting performance was evaluated for short-term horizons (one to three days ahead) across three representative cities. The hybrid SARIMAX-CNN-LSTM, SARIMAX-CNN-Transformer, and SARIMAX-TCN models achieved MAPE values ranging from 18.1% to 26.6% for the different forecast horizons and cities. These results are consistent with existing literature and reinforce the suitability of advanced ML/DL approaches for solar energy forecasting in highly variable and challenging environments such as the Amazon Basin. (AU)

Processo FAPESP: 22/07974-0 - Efeitos sinergéticos das mudanças climáticas e do uso do solo nas fontes e sumidouros de carbono na Amazônia
Beneficiário:Luiz Augusto Toledo Machado
Modalidade de apoio: Auxílio à Pesquisa - Programa de Pesquisa sobre Mudanças Climáticas Globais - Temático
Processo FAPESP: 24/10537-6 - Prh06.1 - engenharia com ênfase em petróleo da escola politécnica da usp
Beneficiário:Marcelo Ramos Martins
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 14/50279-4 - Brasil Research Centre for Gas Innovation
Beneficiário:Julio Romano Meneghini
Modalidade de apoio: Auxílio à Pesquisa - Programa Centros de Pesquisa Aplicada
Processo FAPESP: 20/15230-5 - Centro de Pesquisa e Inovação de Gases de Efeito Estufa - RCG2I
Beneficiário:Julio Romano Meneghini
Modalidade de apoio: Auxílio à Pesquisa - Programa Centros de Pesquisa Aplicada