Busca avançada
Ano de início
Entree


Texto completo
Autor(es):
Viana, R. L. ; Souza, L. C. ; Sales, M. R. ; Mugnaine, M. ; Szezech, J. D., Jr. ; Caldas, I. L. ; Marwan, N. ; Kurths, J.
Número total de Autores: 8
Tipo de documento: Artigo Científico
Fonte: RECURRENCE PLOTS AND THEIR QUANTIFICATIONS: METHODOLOGICAL BREAKTHROUGHS AND INTERDISCIPLINARY DISCOVERIES; v. N/A, p. 14-pg., 2025-01-01.
Resumo

In quasi-integrable Hamiltonian systems, certain chaotic orbits become trapped around periodic islands for extended periods before escaping to the chaotic sea, a phenomenon known as stickiness. In fusion plasmas, the stickiness effect manifests in the prolonged trapping of magnetic field lines in a specific region for many toroidal turns, influencing plasma transport. We apply here a novel concept based on recurrence plots, revealing the existence of a hierarchical structure of islands around islands where chaotic orbits become trapped. This analysis is conducted for a Hamiltonian system describing the magnetic field lines in a Tokamak. Furthermore, utilizing this quantifier, we can distinguish between different levels of this structure and compute the cumulative distribution of trapping times. (AU)

Processo FAPESP: 18/03211-6 - Dinâmica não linear
Beneficiário:Iberê Luiz Caldas
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 23/16146-6 - Dinâmica e transporte em redes de mapas simpléticos não lineares
Beneficiário:Leonardo Costa de Souza
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 23/08698-9 - Processos de transporte em sistemas Hamiltonianos
Beneficiário:Matheus Rolim Sales
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado