| Texto completo | |
| Autor(es): |
Garcia-Ferreira, S.
;
Tomita, A. H.
;
Trianon-Fraga, J.
Número total de Autores: 3
|
| Tipo de documento: | Artigo Científico |
| Fonte: | Topology and its Applications; v. 379, p. 10-pg., 2026-02-15. |
| Resumo | |
Given a selective ultrafilter p is an element of w & lowast;, we prove that there exists a p-compact group topology on Q((c)) without nontrivial convergent sequences and a closed subgroup H subset of Q((c))which contains an element not divisible by any n is an element of omega (Q((c))does not admit a p-compact topology for any p is an element of omega & lowast;. Given H a group and G a subgroup of Q which is not n-divisible, for some prime number n > 1, but is m-divisible for each prime number m not equal n, we show that a group topology compatible with H (c) G cannot be p-compact for any p is an element of omega & lowast;. (c) 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). (AU) | |
| Processo FAPESP: | 19/12628-0 - Pseudocompacidade e ultrafiltros |
| Beneficiário: | Juliane Trianon Fraga |
| Modalidade de apoio: | Bolsas no Brasil - Doutorado |
| Processo FAPESP: | 19/19924-4 - Grupos pseudocompactos e propriedades relacionadas |
| Beneficiário: | Artur Hideyuki Tomita |
| Modalidade de apoio: | Bolsas no Exterior - Pesquisa |