Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Pattern classification with mixtures of weighted least-squares support vector machine experts

Texto completo
Autor(es):
Lima, Clodoaldo A. M. [1] ; Coelho, Andre L. V. [2] ; Von Zuben, Fernando J. [3]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Prebiteriana Mackenzie, Grad Program Elect Engn, BR-01302907 Sao Paulo - Brazil
[2] Univ Fortaleza, Grad Program Appl Informat, Ctr Technol Sci, BR-60811905 Fortaleza, Ceara - Brazil
[3] Univ Estadual Campinas, Lab Bioinformat & Bioinspired Comp LBiC, Fac Elect & Comp Engn, BR-13083970 Campinas, SP - Brazil
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: NEURAL COMPUTING & APPLICATIONS; v. 18, n. 7, p. 843-860, OCT 2009.
Citações Web of Science: 4
Resumo

Support Vector Machine (SVM) classifiers are high-performance classification models devised to comply with the structural risk minimization principle and to properly exploit the kernel artifice of nonlinearly mapping input data into high-dimensional feature spaces toward the automatic construction of better discriminating linear decision boundaries. Among several SVM variants, Least-Squares SVMs (LS-SVMs) have gained increased attention recently due mainly to their computationally attractive properties coming as the direct result of applying a modified formulation that makes use of a sum-squared-error cost function jointly with equality, instead of inequality, constraints. In this work, we present a flexible hybrid approach aimed at augmenting the proficiency of LS-SVM classifiers with regard to accuracy/generalization as well as to hyperparameter calibration issues. Such approach, named as Mixtures of Weighted Least-Squares Support Vector Machine Experts, centers around the fusion of the weighted variant of LS-SVMs with Mixtures of Experts models. After the formal characterization of the novel learning framework, simulation results obtained with respect to both binary and multiclass pattern classification problems are reported, ratifying the suitability of the novel hybrid approach in improving the performance issues considered. (AU)

Processo FAPESP: 04/09597-0 - Metodos de kernel e agrupamento de maquinas para processamento de sinais em telecomunicacoes.
Beneficiário:Clodoaldo Aparecido de Moraes Lima
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado