Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

ECG arrhythmia classification based on optimum-path forest

Texto completo
Autor(es):
Luz, Eduardo Jose da S. [1] ; Nunes, Thiago M. [2] ; de Albuquerque, Victor Hugo C. [3] ; Papa, Joao P. [4] ; Menotti, David [1]
Número total de Autores: 5
Afiliação do(s) autor(es):
[1] Univ Fed Ouro Preto, Dept Comp, BR-35400000 Ouro Preto, MG - Brazil
[2] Univ Fed Ceara, Teleinformat Engeneering Dept, Fortaleza, CE - Brazil
[3] Univ Fortaleza, Postgrad Program Appl Informat, Fortaleza, CE - Brazil
[4] Univ Estadual Paulista, Dept Comp Sci, Bauru, SP - Brazil
Número total de Afiliações: 4
Tipo de documento: Artigo Científico
Fonte: EXPERT SYSTEMS WITH APPLICATIONS; v. 40, n. 9, p. 3561-3573, JUL 2013.
Citações Web of Science: 52
Resumo

An important tool for the heart disease diagnosis is the analysis of electrocardiogram (ECG) signals, since the non-invasive nature and simplicity of the ECG exam. According to the application, ECG data analysis consists of steps such as preprocessing, segmentation, feature extraction and classification aiming to detect cardiac arrhythmias (i.e., cardiac rhythm abnormalities). Aiming to made a fast and accurate cardiac arrhythmia signal classification process, we apply and analyze a recent and robust supervised graph-based pattern recognition technique, the optimum-path forest (OPF) classifier. To the best of our knowledge, it is the first time that OPF classifier is used to the ECG heartbeat signal classification task. We then compare the performance (in terms of training and testing time, accuracy, specificity, and sensitivity) of the OPF classifier to the ones of other three well-known expert system classifiers, i.e., support vector machine (SVM), Bayesian and multilayer artificial neural network (MLP), using features extracted from six main approaches considered in literature for ECG arrhythmia analysis. In our experiments, we use the MIT-BIH Arrhythmia Database and the evaluation protocol recommended by The Association for the Advancement of Medical Instrumentation. A discussion on the obtained results shows that OPF classifier presents a robust performance, i.e., there is no need for parameter setup, as well as a high accuracy at an extremely low computational cost. Moreover, in average, the OPF classifier yielded greater performance than the MLP and SVM classifiers in terms of classification time and accuracy, and to produce quite similar performance to the Bayesian classifier, showing to be a promising technique for ECG signal analysis. (C) 2012 Elsevier Ltd. All rights reserved. (AU)

Processo FAPESP: 09/16206-1 - Novas tendências em reconhecimento de padrões baseado em floresta de caminhos ótimos
Beneficiário:João Paulo Papa
Modalidade de apoio: Auxílio à Pesquisa - Jovens Pesquisadores