Texto completo | |
Autor(es): |
Número total de Autores: 3
|
Afiliação do(s) autor(es): | [1] Umea Univ, Dept Comp Sci, SE-90187 Umea - Sweden
[2] Umea Univ, HPC2N, SE-90187 Umea - Sweden
[3] Ukrainian Acad Sci, Inst Math, Kiev - Ukraine
Número total de Afiliações: 3
|
Tipo de documento: | Artigo Científico |
Fonte: | ELECTRONIC JOURNAL OF LINEAR ALGEBRA; v. 27, p. 1-18, JAN 2014. |
Citações Web of Science: | 6 |
Resumo | |
The set of all solutions to the homogeneous system of matrix equations (X-T A + AX, X-T B + BX) = (0, 0), where (A, B) is a pair of symmetric matrices of the same size, is characterized. In addition, the codimension of the orbit of (A, B) under congruence is calculated. This paper is a natural continuation of the article {[}A. Dmytryshyn, B. Kagstrom, and V. V. Sergeichuk. Skew-symmetric matrix pencils: Codimension counts and the solution of a pair of matrix equations. Linear Algebra Appl., 438:3375-3396, 2013.], where the corresponding problems for skew-symmetric matrix pencils are solved. The new results will be useful in the development of the stratification theory for orbits of symmetric matrix pencils. (AU) | |
Processo FAPESP: | 12/18139-2 - Métodos de teoria de representações em álgebra linear |
Beneficiário: | Vyacheslav Futorny |
Modalidade de apoio: | Auxílio à Pesquisa - Pesquisador Visitante - Internacional |