Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

A Robust Subspace Projection Autoassociative Memory Based on the M-Estimation Method

Texto completo
Autor(es):
Valle, Marcos Eduardo [1]
Número total de Autores: 1
Afiliação do(s) autor(es):
[1] Univ Estadual Campinas, Dept Appl Math, BR-13083859 Campinas, SP - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS; v. 25, n. 7, p. 1372-1377, JUL 2014.
Citações Web of Science: 10
Resumo

An autoassociative memory (AM) that projects an input pattern onto a linear subspace is referred to as a subspace projection AM (SPAM). The optimal linear AM (OLAM), which can be used for the storage and recall of real-valued patterns, is an example of SPAM. In this brief we introduce a novel SPAM model based on the robust M-estimation method. In contrast to the OLAM and many other associative memory models, the robust SPAM represents a neural network in which the synaptic weights are iteratively adjusted during the retrieval phase. Computational experiments concerning the reconstruction of corrupted gray-scale images reveal that the novel memories exhibit an excellent tolerance with respect to salt and pepper noise as well as some tolerance with respect to Gaussian noise and blurred input images. (AU)

Processo FAPESP: 13/12310-4 - Algumas generalizações das memórias associativas recorrentes por correlação
Beneficiário:Marcos Eduardo Ribeiro Do Valle Mesquita
Modalidade de apoio: Auxílio à Pesquisa - Regular