Busca avançada
Ano de início
Entree

Hipoeliticidade global.

Processo: 04/14378-6
Modalidade de apoio:Bolsas no Brasil - Pós-Doutorado
Data de Início da vigência: 01 de abril de 2005
Data de Término da vigência: 26 de setembro de 2005
Área de conhecimento:Ciências Exatas e da Terra - Matemática - Análise
Pesquisador responsável:Gerson Petronilho
Beneficiário:Luís Antônio Carvalho dos Santos
Instituição Sede: Centro de Ciências Exatas e de Tecnologia (CCET). Universidade Federal de São Carlos (UFSCAR). São Carlos , SP, Brasil
Vinculado ao auxílio:03/12206-0 - Teoria geométrica de equações diferenciais parciais e várias variáveis complexas, AP.TEM
Palavra(s)-Chave do Pesquisador:Gevrey | Hipoeliticidade Global | Soma De Quadrados | Tipo Finito | Tipo Infinito

Resumo

Neste projeto apresentamos dois problemas. O primeiro versa sobre a hipoeliticidade global $Cλ\infty$ e o segundo trata da hipoeliticidade global Gevrey. O primeiro problema visa estudar a hipoeliticidade global para certas classes de operadores dados na forma de soma de quadrados de campos vetoriais reais, mais gerais da aquelas encontradas na literatura. Quando os campos vetoriais satisfazem a condição dos colchetes de Hörmander então um operador soma de quadrados é sempre localmente $Cλ\infty$ hipoelítico e, portanto globalmente $Cλ\infty$ hipoelítico. Para as classes de operadores que estamos nos propondo a estudar a condição dos colchetes pode falhar e assim o problema global torna-se interessante. O segundo problema ataca a seguinte questão: Seja $P$ um operador com coeficientes analíticos e suponha que $P$ seja globalmente $Cλ\infty$ hipoelítico. O operador $P$ é globalmente hipoelítico na classe Gevrey? Estamos nos propondo a generalizar os resultados obtidos recentemente por Himonas e Petronilho. (AU)

Matéria(s) publicada(s) na Agência FAPESP sobre a bolsa:
Mais itensMenos itens
Matéria(s) publicada(s) em Outras Mídias ( ):
Mais itensMenos itens
VEICULO: TITULO (DATA)
VEICULO: TITULO (DATA)