Busca avançada
Ano de início
Entree


Uma abordagem híbrida baseada em casos e redes neurais. Uma aplicação: escolha e configuração de modelos de redes neurais

Texto completo
Autor(es):
Ricardo Barz Sovat
Número total de Autores: 1
Tipo de documento: Tese de Doutorado
Imprenta: São Carlos.
Instituição: Universidade de São Paulo (USP). Instituto de Ciências Matemáticas e de Computação (ICMC/SB)
Data de defesa:
Membros da banca:
André Carlos Ponce de Leon Ferreira de Carvalho; Jorge Muniz Barreto; Teresa Bernarda Ludermir; Maria Carolina Monard; Marcio Rillo
Orientador: André Carlos Ponce de Leon Ferreira de Carvalho; Sandra Maria Aluisio
Resumo

Nesta tese, é pesquisada a integração entre dois paradigmas da área de Inteligência Artificial, Raciocínio Baseado em Casos e Redes Neurais Artificiais. Essa pesquisa dá-se em dois sentidos. Primeiro, o estudo da aplicação da metodologia de Raciocínio Baseado em Casos ao problema da escolha e configuração de um modelo de Rede Neural Artificial. Em segundo lugar, a viabilidade da introdução de uma Rede Neural Artificial no interior do ciclo de funcionamento de um sistema baseado em casos. As soluções para o problema de escolha e configuração de um modelo de Rede Neural ainda possuem, até hoje, uma forte componente empírica. Não existe um conhecimento formalizado disponível que forneça suporte a um processo único de implementação destes sistemas, ditos conexionistas. A qualidade da solução depende em muito da habilidade do projetista em ajustar um conjunto de diversos parâmetros envolvidos. A metodologia de Raciocínio Baseado em Casos, por sua vez, fundamenta-se na idéia de que um especialista eficiente não é um processador de regras, mas um acumulador de experiências práticas, bem e mal sucedidas. Desta forma, ela torna-se bastante adequada à aplicação em domínios em que o conhecimento é mais difuso, ou seja, não pode ser facilmente explicitado. A partir destas observações, é proposta a representação do problema como uma tarefa tipicamente de projeto {design) e estabelecida uma estratégia para aplicar a metodologia em sua solução. No outro sentido, a escolha da melhor solução, dentro da metodologia de Raciocínio Baseado em Casos, depende de bons processos que permitam a transformação de uma solução anterior em uma solução adequada ao problema atual. Esses processos podem beneficiar-se, conforme é mostrado ao longo do trabalho, de uma boa capacidade de generalização de um conhecimento adquirido. Na maioria dos sistemas existentes, essas transformações, ou adaptações, são executadas através de regras de produção. Essas regras por sua vez exigem também um grau de aquisição de conhecimento em domínios nem sempre bem estruturados. Redes Neurais Artificiais possuem como ponto forte a capacidade de aprender a partir de exemplos, extrair características intrínsecas de conjuntos de dados e generalizar esse conhecimento adquirido. Essa capacidade as credencia como boas alternativas para substituição de sistemas baseados em regras. O que pode ser considerado um ponto fraco das Redes Neurais, sua carência de justificativas para, por exemplo, associações ou previsões efetuadas, não constitui um empecilho para sua intodução neste ponto específico do ciclo de Raciocínio Baseado em Casos. Com base nestas premissas, este trabalho sugere uma abordagem híbrida neurosimbólica como mecanismo de recuperação e adaptação de casos desse ciclo. Para servir como ferramenta de testes, foi também implementado um ambiente de desenvolvimento de sistemas de Raciocínio Baseado em Casos. (AU)

Processo FAPESP: 98/06519-6 - Um sistema para escolha e configuração de modelos de redes neurais utilizando raciocínio baseado em casos
Beneficiário:Ricardo Barz Sovat
Modalidade de apoio: Bolsas no Brasil - Doutorado