Busca avançada
Ano de início
Entree


Uma abordagem baseada em grafos para rastreamento de múltiplos objetos em vídeos estruturados com um aplicação para o reconhecimento de ações

Texto completo
Autor(es):
Henrique Morimitsu
Número total de Autores: 1
Tipo de documento: Tese de Doutorado
Imprenta: São Paulo.
Instituição: Universidade de São Paulo (USP). Instituto de Matemática e Estatística (IME/SBI)
Data de defesa:
Membros da banca:
Roberto Marcondes Cesar Junior; Junior Barrera; Isabelle Bloch; Anderson de Rezende Rocha; William Robson Schwartz
Orientador: Roberto Marcondes Cesar Junior
Resumo

Nesta tese, uma nova abordagem para o rastreamento de múltiplos objetos com o uso de informação estrutural é proposta. Os objetos são rastreados usando uma combinação de filtro de partículas com descrição das imagens por meio de Grafos Relacionais com Atributos (ARGs). O processo é iniciado a partir do aprendizado de um modelo de grafo estrutural probabilístico utilizando imagens anotadas. Os grafos são usados para avaliar o estado atual do rastreamento e corrigi-lo, se necessário. Desta forma, o método proposto é capaz de lidar com situações desafiadoras como movimento abrupto e perda de rastreamento devido à oclusão. A principal contribuição desta tese é a exploração do modelo estrutural aprendido. Por meio dele, a própria informação estrutural da cena é usada para guiar o processo de detecção em caso de perda do objeto. Tal abordagem difere de trabalhos anteriores, que utilizam informação estrutural apenas para avaliar o estado da cena, mas não a consideram para gerar novas hipóteses de rastreamento. A abordagem proposta é bastante flexível e pode ser aplicada em qualquer situação em que seja possível encontrar padrões de relações estruturais entre os objetos. O rastreamento de objetos pode ser utilizado para diversas aplicações práticas, tais como vigilância, análise de atividades ou navegação autônoma. Nesta tese, ele é explorado para rastrear diversos objetos em vídeos de esporte, na qual as regras do jogo criam alguns padrões estruturais entre os objetos. Além de detectar os objetos, os resultados de rastreamento também são usados como entrada para reconhecer a ação que cada jogador está realizando. Esta etapa é executada classificando um segmento da sequência de rastreamento por meio de Modelos Ocultos de Markov (HMMs). A abordagem de rastreamento proposta é testada em diversos vídeos de jogos de tênis de mesa e na base de dados ACASVA, demonstrando a capacidade do método de lidar com situações de oclusão ou cortes de câmera. (AU)

Processo FAPESP: 12/09741-0 - Detecção de objetos em múltiplas vistas usando grafos-chave
Beneficiário:Henrique Morimitsu
Modalidade de apoio: Bolsas no Brasil - Doutorado