Busca avançada
Ano de início
Entree


Aprendizado de w-operadores usando modelos lineares para imagens binárias e em níveis de cinza

Texto completo
Autor(es):
Igor dos Santos Montagner
Número total de Autores: 1
Tipo de documento: Tese de Doutorado
Imprenta: São Paulo.
Instituição: Universidade de São Paulo (USP). Instituto de Matemática e Estatística (IME/SBI)
Data de defesa:
Membros da banca:
Roberto Hirata Junior; Stéphane Canu; André Carlos Ponce de Leon Ferreira de Carvalho; Roberto Marcondes Cesar Junior; Alexandre Xavier Falcão
Orientador: Roberto Hirata Junior; Nina Sumiko Tomita Hirata
Resumo

Processamento de imagens pode ser usado para resolver problemas em diversas áreas, como imagens médicas, processamento de documentos e segmentação de objetos. Operadores de imagens normalmente são construídos combinando diversos operadores elementares e ajustando seus parâmetros. Uma abordagem alternativa é a estimação de operadores de imagens a partir de pares de exemplos contendo uma imagem de entrada e o resultado esperado. Restringindo os operadores considerados para o que são invariantes à translação e localmente definidos ($W$-operadores), podemos aplicar técnicas de Aprendizagem de Máquina para estimá-los. O formato que define quais vizinhos são usadas é chamado de janela. $W$-operadores treinados com janelas grandes frequentemente tem problemas de generalização, pois necessitam de grandes conjuntos de treinamento. Este problema é ainda mais grave ao treinar operadores em níveis de cinza. Apesar de técnicas como o projeto dois níveis, que combina a saída de diversos operadores treinados com janelas menores, mitigar em parte estes problemas, uma determinação de parâmetros complexa é necessária. Neste trabalho apresentamos duas técnicas que permitem o treinamento de operadores usando janelas grandes. A primeira, KA, é baseada em Máquinas de Suporte Vetorial (SVM) e utiliza técnicas de aproximação de kernels para realizar o treinamento de $W$-operadores. Uma escolha adequada de kernels permite o treinamento de operadores níveis de cinza e binários. A segunda técnica, NILC, permite a criação automática de combinações de operadores de imagens. Este método utiliza uma técnica de otimização específica para casos em que o número de características é muito grande. Ambos métodos obtiveram resultados competitivos com algoritmos da literatura em dois domínio de aplicação diferentes. O primeiro, Staff Removal, é um processamento de documentos binários frequente em sistemas de reconhecimento ótico de partituras. O segundo é um problema de segmentação de vasos sanguíneos em imagens em níveis de cinza. (AU)

Processo FAPESP: 11/23310-0 - Projeto automático de operadores de imagens: extensão e contextualização para reticulados não necessariamente booleanos
Beneficiário:Igor dos Santos Montagner
Modalidade de apoio: Bolsas no Brasil - Doutorado Direto