Busca avançada
Ano de início
Entree


Computação paraconsistente: uma abordagem logica a computação quantica

Texto completo
Autor(es):
Juan Carlos Agudelo Agudelo
Número total de Autores: 1
Tipo de documento: Tese de Doutorado
Imprenta: Campinas, SP.
Instituição: Universidade Estadual de Campinas (UNICAMP). Instituto de Filosofia e Ciências Humanas
Data de defesa:
Membros da banca:
Walter Alexandre Carnielli; Marcelo Esteban Coniglio; Marcelo Finger; Marcos César de Oliveira; Osvaldo Pessoa Junior
Orientador: Walter Alexandre Carnielli
Resumo

Neste trabalho levantamos, e investigamos do ponto de vista conceitual, evidências de que a complexidade algorítmica pode ser vista como relativa à lógica. Propomos, para tanto, novos modelos de computação fundados sobre lógicas não-clássicas, estudando suas características quanto à expressabilidade computacional e eficiência. A partir desta visão, sugerimos um novo caminho para estudar a eficiência dos modelos de computação quântica, enfatizando a análise de uma lógica subjacente a tais modelos. O conteúdo da tese está estruturado da seguinte maneira: no primeiro capítulo apresentamos uma análise conceitual da noção de 'computação', indicando como este conceito tem mudado desde os trabalhos fundacionais da década de 1930, e discutindo se o conceito deve ser considerado como puramente físico, puramente lógicomatemático ou uma combinação de ambos. O Capítulo 2 introduz duas versões de 'máquinas de Turing paraconsistentes', usando sistemas lógicos diferentes e obtendo modelos com diferentes poderes computacionais (quanto à eficiência); tal resultado constitui uma primeira evidência a favor da relatividade lógica da computação que queremos defender. Outra evidência na mesma direção é apresentada no Capitulo 3, através da generalização dos circuitos booleanos para lógicas não-clássicas, em particular para a lógica paraconsistente mbC e para a lógica modal S5, e da análise do poder computacional de tais generalizações. O Capítulo 4 consiste numa introdução à computação quântica, para logo (no Capítulo 5) estabelecer algumas relações entre modelos de computação quântica e modelos de computação paraconsistente, de maneira a propor uma interpretação lógica dos modelos quânticos. No capítulo final (Capítulo 6) descrevemos várias relações entre mecânica quântica e lógica paraix consistente, relações estas que sugerem potencialidades com alto grau de relevância a respeito da abordagem paraconsistente dos fenômenos computacionais quânticos e que incitam a continuar explorando esta alternativa. (AU)

Processo FAPESP: 05/04123-3 - Computacao quantica, computacao paraconsistente e logica: interrelacoes e fundamentos dos algoritmos quanticos.
Beneficiário:Juan Carlos Agudelo Agudelo
Modalidade de apoio: Bolsas no Brasil - Doutorado