Busca avançada
Ano de início
Entree


Almost disjoint families em topologia

Texto completo
Autor(es):
Vinicius de Oliveira Rodrigues
Número total de Autores: 1
Tipo de documento: Dissertação de Mestrado
Imprenta: São Paulo.
Instituição: Universidade de São Paulo (USP). Instituto de Matemática e Estatística (IME/SBI)
Data de defesa:
Membros da banca:
Artur Hideyuki Tomita; Leandro Fiorini Aurichi; Ana Carolina Boero
Orientador: Artur Hideyuki Tomita
Resumo

Uma almost disjoint family é uma coleção infinita de subconjuntos infinitos de números naturais tal que a interseção de quaisquer dois de seus elementos distintos é finita. Almost disjoint families podem ser utilizadas para construir um espaço topológico associado chamado de Psi-espaços, também conhecido como espaços de Mrówka. As propriedades topológicas deste espaço topológico dependem das propriedades combinatórias da família que o deu origem, e estes espaços podem ser utilizados para responder perguntas sobre topologia geral, muitas vezes não inicialmente relacionadas com almost disjoint families ou seus respectivos espaços de Mrówka. Neste documento, exploramos diversas construções envolvendo estes objetos utilizando combinatória infinita e princípios combinatórios como diamante, Axioma de Martin e técnicas como Forcing e tratamos de problemas envolvendo compactificações de Stone-Cech, espaços sequenciais, a propriedade de Lindelöf em espaços de funções, hiperespaços de Vietoris, dentre outros. O primeiro capítulo contém diversos pré-requisitos necessários para a leitura desta dissertação a fim de torná-la o mais autocontida possível. O segundo capítulo introduz as almost disjoint families e seus Psi-espaços associados, provando diversas propriedades importantes. Os demais capítulos são independentes entre si e tratam de problemas de Topologia Geral que podem ser solucionados com estes conceitos, ou de problemas que derivam destes conceitos. (AU)

Processo FAPESP: 15/15166-7 - M.A.D. families em topologia
Beneficiário:Vinicius de Oliveira Rodrigues
Modalidade de apoio: Bolsas no Brasil - Mestrado