Busca avançada
Ano de início
Entree


Reconhecimento de atividades e abordagens bioinspiradas para robótica em ambientes inteligentes

Texto completo
Autor(es):
Caetano Mazzoni Ranieri
Número total de Autores: 1
Tipo de documento: Tese de Doutorado
Imprenta: São Carlos.
Instituição: Universidade de São Paulo (USP). Instituto de Ciências Matemáticas e de Computação (ICMC/SB)
Data de defesa:
Membros da banca:
Roseli Aparecida Francelin Romero; Fernando Santos Osório; João Paulo Papa; Josue Junior Guimarães Ramos
Orientador: Roseli Aparecida Francelin Romero; Patrícia Amâncio Vargas
Resumo

Projetos de automação residencial têm sido desenvolvidos há algum tempo, tendo evoluído para os chamados ambientes inteligentes. Esses ambientes são caracterizados pela presença de conjuntos de sensores e atuadores, conectados de forma a responder adequada e proativamente a diferentes situações. A integração de ambientes inteligentes com robôs permite a introdução de capacidades adicionais de sensoriamento, além da realização de tarefas com maior flexibilidade e menor complexidade mecânica do que os robôs monolíticos tradicionais. Para dotar tais ambientes de comportamentos verdadeiramente autônomos, algoritmos devem extrair informações semanticamente significativas de quaisquer dados sensoriais disponíveis. Reconhecimento de atividade humana é um dos campos de pesquisa mais ativos dentro deste contexto. Neste projeto, foi abordado o projeto e avaliação de técnicas de aprendizado para reconhecimento da atividade humana, considerando diferentes modalidades de sensores. Dois tipos de redes neurais, baseadas em combinações de Redes Neurais Convolucionais com Redes Recorrentes com Memória de Curto e Longo Prazo ou Redes Convolucionais Temporais, foram propostas e avaliadas em duas bases de dados públicas para reconhecimento de atividade multimodal de vídeos e sensores inerciais. A estrutura resultante foi então empregada a um novo conjunto de dados, o HWU-USP activities dataset, coletado como parte deste trabalho, em um ambiente real dotado de vídeos, unidades inerciais e sensores ambientais. Foi avaliada a influência dos sensores ambientais, sincronizados aos dados inerciais e de vídeo, na acurácia dos resultados, tendo se mostrado uma abordagem promissora. Além disso, o novo conjunto de dados foi provido de atividades complexas com dependências de longo prazo, avaliadas por meio de classificadores baseados em segmentos de comprimento limitado, simulando os resultados para aplicações de tempo real. Em um segundo momento, foram desenvolvidos trabalhos sobre dados neurofisiológicos de primatas induzidos à doença de Parkinson, indo de análises e classificação dos dados, com uso de redes neurais, até a construção de um modelo computacional das estruturas acometidas dentro do cérebro. Embora distinta dos estudos sobre reconhecimento de atividades e tecnologias assistivas, focos desta tese, esses trabalhos foram relacionados na natureza das técnicas empregadas, e seus resultados fizeram parte do cenário de aplicação desenvolvido em seguida. Por fim, foi projetado e implementado um cenário de aplicação na forma de simulação robótica, de modo que o módulo desenvolvido pudesse ser avaliado em situações práticas. Para o mecanismo de seleção de comportamento, uma abordagem bioinspirada baseada em modelos computacionais do circuito núcleos da base-tálamo-córtex foi avaliada e comparada a abordagens não bioinspiradas baseadas em heurísticas simples. (AU)

Processo FAPESP: 17/02377-5 - Aprendizado de Máquina e Aplicações para Robótica em Ambientes Inteligentes
Beneficiário:Caetano Mazzoni Ranieri
Modalidade de apoio: Bolsas no Brasil - Doutorado