Busca avançada
Ano de início
Entree


Escalonamento de tarefas com localidade de dados em grids

Texto completo
Autor(es):
Marcelo Galvão Póvoa
Número total de Autores: 1
Tipo de documento: Dissertação de Mestrado
Imprenta: Campinas, SP.
Instituição: Universidade Estadual de Campinas (UNICAMP). Instituto de Computação
Data de defesa:
Membros da banca:
Eduardo Candido Xavier; Daniel Morgato Martin; Flávio Keidi Miyazawa
Orientador: Eduardo Candido Xavier
Resumo

Sistemas computacionais conhecidos como Data Grids fornecem uma infraestrutura computacional distribuída para processamento e armazenamento de dados, com várias aplicações envolvendo computação em larga escala. Devido ao uso de um grande volume de dados, é necessário não apenas um escalonamento eficiente de tarefas, mas também uma distribuição inteligente de réplicas dos dados para se atingir o melhor desempenho. Esses dois problemas já foram extensivamente estudados de forma independente na literatura, mas estamos concentrados em um formulação integrada em um problema estático, de forma a otimizar uma única função objetivo. Primeiramente, mostramos que este problema não pode admitir um algoritmo aproximado. Porém, considerando uma versão restrita do problema, apresentamos um algoritmo aproximado original com fator de aproximação constante. Também fazemos um estudo de algoritmos aproximados para problemas relacionados disponíveis na literatura. Sob um aspecto mais prático, introduzimos duas heurísticas originais para o problema. A primeira é baseada no agrupamento de máquinas próximas em clusters, enquanto a segunda procura identificar grupos de dados frequentemente acessados em conjunto. Comparamos esses algoritmos com duas abordagens adaptadas da literatura, através de simulações computacionais em um grande conjunto de instâncias baseadas em grids reais. Mostramos que nossa primeira heurística costuma obter melhores soluções que as outras com boa eficiência de tempo, enquanto a segunda heurística é ainda mais rápida e ainda obtém soluções competitivas (AU)

Processo FAPESP: 14/02104-0 - Escalonamento de tarefas com localidade de dados em grids
Beneficiário:Marcelo Galvão Póvoa
Modalidade de apoio: Bolsas no Brasil - Mestrado