Busca avançada
Ano de início
Entree


Dimensão fractal de atratores para sistemas dinâmicos com aplicações: problemas determinísticos e aleatórios

Texto completo
Autor(es):
Arthur Cavalcante Cunha
Número total de Autores: 1
Tipo de documento: Tese de Doutorado
Imprenta: São Carlos.
Instituição: Universidade de São Paulo (USP). Instituto de Ciências Matemáticas e de Computação (ICMC/SB)
Data de defesa:
Membros da banca:
Everaldo de Mello Bonotto; Tomás Caraballo Garrido; Juliana Fernandes da Silva Pimentel; Pedro Marin Rubio; Marcio Antonio Jorge da Silva
Orientador: Alexandre Nolasco de Carvalho
Resumo

Neste trabalho obtemos estimativas para a dimensão fractal de atratores em três contextos: atratores globais associados a sistemas dinâmicos autônomos, atratores uniformes associados a sistemas dinâmicos não-autônomos e atratores uniformes aleatórios associados a sistemas dinâmicos aleatórios não-autônomos. Primeiro, apresentamos uma simples prova de um resultado de Mañé (Springer LNM 898, 230242, 1981) no qual o atrator global A (como um subconjunto de um espaço de Banach) para uma função S tem dimensão fractal finita se DS(x) =C(x)+L(x), onde C é compacto e L é uma contração (e ambos são operadores lineares). Em particular, provamos que se S é compacto e diferenciável então A tem dimensão fractal finita. Supondo uma propriedade de regularização (conhecida como smoothing) para a diferencial DS provamos também que A tem dimensão finita e com isso fazemos uma comparação deste método com o já conhecido método de Mañé. Aplicamos nossos resultados teóricos em um problema parabólico semilinear abstrato e em equações de Navier-Stokes em 2D. Segundo, provamos usando também uma propriedade smoothing que atratores uniformes têm dimensão fractal finita em espaços de Banach, com estimativas dadas em termos da dimensão fractal do espaço símbolo mais um número de entropia de Kolmogorov. A propriedade smoothing é ainda utilizada para obtermos estimativas na dimensão fractal de atratores uniformes em espaços com maior regularização. Além disso, provamos que a dimensão fractal da envoltória (hull) de uma função dependente do tempo é completamente determinada pelo seu comportamento para tempos grandes (positivos e negativos). Aplicações são dadas em equações não-autônomas de reação-difusão e Navier-Stokes em 2D. Terceiro, utilizamos métodos smoothing e squeezing (\"compressão\") para obtermos estimativas na dimensão fractal de atratores uniformes aleatórios. Em geral a propriedade squeezing pode ser vista como um caso particular da smoothing, mas neste caso dos sistemas dinâmicos aleatórios não-autônomos isso não ocorre, e nenhum dos métodos implica no outro. Mais uma vez as estimativas na dimensão fractal são dadas em termos da dimensão do espaço símbolo e dos parâmetros aleatórios da propriedade smoothing/squeezing; a propriedade smoothing é utilizada ainda para obtermos estimativas na dimensão fractal em espaços mais regulares. Finalmente, consideramos uma perturbação aleatória (a exemplo de um ruído escalar aditivo) da equação de reação-difusão não-autônoma tratada anteriormente. Neste ponto é importante a construção de conjuntos aleatórios que absorvem a si próprios a partir de um período determinístico de tempo, situação a princípio não esperada. (AU)

Processo FAPESP: 16/26289-5 - Estimativas da Dimensão Fractal para Atratores de Sistemas Dinâmicos Autônomos e Não-Autônomos
Beneficiário:Arthur Cavalcante Cunha
Modalidade de apoio: Bolsas no Brasil - Doutorado