Busca avançada
Ano de início
Entree


Metodo de ponto proximal e separadores

Texto completo
Autor(es):
Paulo Jose da Silva e Silva
Número total de Autores: 1
Tipo de documento: Dissertação de Mestrado
Imprenta: São Paulo.
Instituição: Universidade de São Paulo (USP). Instituto de Matemática e Estatística (IME/SBI)
Data de defesa:
Orientador: Carlos Humes Júnior
Resumo

Esta dissertacao e centrada em metodos de ponto proximal (mpp), vistos como algoritmos para programacao convexa. A importancia destes algoritmos para programacao matematica esta, em parte, associada a sua conexao com metodos de multiplicadores, como lagrangianos aumentados ou o metodo exponencial de multiplicadores [11, 4]. O mpp e caracterizado pela solucao de uma sequencia de problemas auxiliares, cujas funcoes objetivo sao a soma da funcao objetivo original com um termo de regularizacao. Os primeiros trabalhos [17, 20] usavam um multiplo do quadrado da norma euclidiana como funcao de regularizacao. Neste texto, apresentam-se resultados de convergencia para algoritmos que usam uma generalizacao de regularizacao euclidiana. Basicamente, mostra-se que o mpp converge usando a composicao de funcoes estritamente convexas com normas, sob hipoteses minimas de diferenciabilidade do termo estritamente convexo. Isto e feito utilizando as ideias de separadores introduzidas por eaves e zangwill [9]. Mostra-se ainda que, quando a norma euclidiana e empregada, a propriedade de fejer monotonicidade se mantem. Alem destes resultados, que formam a parte central da dissertacao, e feita uma revisao de alguns topicos de convexidade e subdiferenciabilidade e uma breve excursao ao caso em que a regularizacao e uma distancia de bregman (AU)

Processo FAPESP: 96/01235-4 - Pontos proximais, dualidade e separadores
Beneficiário:Paulo José da Silva e Silva
Modalidade de apoio: Bolsas no Brasil - Mestrado