Busca avançada
Ano de início
Entree


Álgebras afins de produto entrelaçado com traços de paridade genérica

Texto completo
Autor(es):
Eduardo Monteiro Mendonça
Número total de Autores: 1
Tipo de documento: Dissertação de Mestrado
Imprenta: São Paulo.
Instituição: Universidade de São Paulo (USP). Instituto de Matemática e Estatística (IME/SBI)
Data de defesa:
Membros da banca:
Iryna Kashuba; Lucas Henrique Calixto; Adriano Adrega de Moura
Orientador: Iryna Kashuba; Alistair Savage
Resumo

O objetivo desse projeto é estudar teoria estrutural e representações de álgebras afins de produto entrelaçado An(F). Tais álgebras aparecem naturalmente em categorificações Heisenberg e generaliza outras importantes álgebras (álgebras de Hecke affim degenerada, álgebras de Sergeev afim e álgebras entrelaçadas de Hecke).A classe de algebras foi introduziada por D. Rosso e A. Savage em [RS17]. Em [Sav20], o segundo autor estudou teoria estrutural e de representações sobre a condição de que o traço de F fosse par. Nesse projeto estendemos a definição para o caso de traço ímpar, obtendo resultados análogos ímpares. Como nossa abordagem análoga a de Savage, nós consideramos os traços com paridade arbitrária e unificamos enunciados e demonstrações. Estudando a teoria estrutural, nós apresentamos uma base para An(F)e calculamos seu centro. Também introduzimos elementos de Jucys-Murphy e elementos entrelaçados. Considerando uma equivalência de categorias, descrevemos os An(F)-módulos simples em função de representações simples das álgebras de Hecke afim degenerada, álgebras de Sergeev afime álgebras de produto entrelaçantes. Definimos os quocientes ciclôtmicos ACn(F) de An(F) e mostramos que essas álgebras são álgebras de Frobenius com uma apropriada escolha de traço.Enunciamos um ciclotômico Mackey teorema e mostramos que ACn(F)é uma extensão de Frobenius de ACn1(F) (AU)

Processo FAPESP: 18/07628-9 - Álgebras de produto entrelaçado
Beneficiário:Eduardo Monteiro Mendonça
Modalidade de apoio: Bolsas no Brasil - Mestrado