Busca avançada
Ano de início
Entree


Aprendizado de representações e caracterização de redes complexas com aplicações em visão computacional

Texto completo
Autor(es):
Lucas Correia Ribas
Número total de Autores: 1
Tipo de documento: Tese de Doutorado
Imprenta: São Carlos.
Instituição: Universidade de São Paulo (USP). Instituto de Ciências Matemáticas e de Computação (ICMC/SB)
Data de defesa:
Membros da banca:
Odemir Martinez Bruno; Hélio Pedrini; Eraldo Ribeiro Junior; Agma Juci Machado Traina
Orientador: Odemir Martinez Bruno
Resumo

As redes complexas têm sido utilizadas como ferramenta de estudo em diversas áreas da ciência devido ao seu carácter multidisciplinar e perspectiva inovadora em relação à análise de dados tradicional. Em visão computacional, diversas abordagens baseadas em redes complexas foram propostas ao longo dos últimos anos com resultados promissores. Tal sucesso é explicado pela capacidade de modelar e quantificar a complexidade presente em muitas imagens, principalmente das advindas da natureza que possui um comportamento não linear. Embora os resultados sejam promissores, técnicas de modelagem otimizadas e métodos de caracterização mais robustos para descrever a complexidade da topologia das redes são necessários. Este trabalho tem como objetivo investigar e propor novas técnicas de modelagem e caracterização de redes complexas focando na aplicação em problemas de visão computacional. Especificamente, foram investigados problemas clássicos de análise de imagens e vídeos: análise de texturas (em níveis de cinza, coloridas e dinâmicas) e formas. Em relação à modelagem, foi estudada uma abordagem eficaz e otimizada para mapear as imagens e vídeos de texturas em redes complexas direcionadas. A respeito da caracterização, com base em métricas clássicas e autômatos celulares, foram propostas duas melhorias: (i) padrões binários em autômatos de rede (LLNA-BP) para caracterização de redes complexas e (ii) redes de transformada da distância para análise de formas. Além disso, foi investigado o aprendizado de representações usando redes neurais randomizadas (RNNs); uma arquitetura simples e com rápido algoritmo de aprendizado. Nesse sentido, como nova forma de caracterização, foram propostas representações formadas pelos pesos da camada de saída de RNNs treinadas com características topológicas de redes complexas. Ao combinar as técnicas desenvolvidas de modelagem e de aprendizado de representações, vários métodos foram propostos para análise de texturas em níveis de cinza, coloridas e dinâmicas e análise de formas. Resultados promissores foram alcançados pelos métodos desenvolvidos em comparação aos métodos da literatura em tarefas de classificação usando vários conjuntos de dados que são referência. Adicionalmente, para avaliar o potencial dos métodos desenvolvidos, foram investigadas cinco aplicações em problemas reais nas áreas de biologia, botânica, físicoquímica e medicina, alcançando resultados interessantes e contribuindo para o desenvolvimento destas áreas. (AU)

Processo FAPESP: 16/23763-8 - Modelagem e análise de redes complexas para visão computacional
Beneficiário:Lucas Correia Ribas
Modalidade de apoio: Bolsas no Brasil - Doutorado