Busca avançada
Ano de início
Entree


Aprendizado por reforço profundo para robótica social usando sinais sociais e emoções faciais

Texto completo
Autor(es):
José Pedro Ribeiro Belo
Número total de Autores: 1
Tipo de documento: Tese de Doutorado
Imprenta: São Carlos.
Instituição: Universidade de São Paulo (USP). Instituto de Ciências Matemáticas e de Computação (ICMC/SB)
Data de defesa:
Membros da banca:
Roseli Aparecida Francelin Romero; Plinio Thomaz Aquino Junior; Glauco Augusto de Paula Caurin; Denis Fernando Wolf
Orientador: Roseli Aparecida Francelin Romero
Resumo

A robótica social representa um ramo da interação humano-robô dedicado ao desenvolvimento de sistemas para controlar os robôs para operar em ambientes não estruturados com a presença de seres humanos. Robôs sociais devem interagir com seres humanos entendendo sinais sociais e respondendo adequadamente a eles. A maioria dos robôs sociais ainda são pré-programados, não tendo grande capacidade de aprender e responder com ações adequadas durante uma interação com humanos. Métodos mais elaborados usam movimentos corporais, direção do olhar e linguagem corporal. Nesta tese os sinais socialmente aceitáveis comumente utilizados durante uma interação são considerados para o treinamento de um robô social. Um sistema inteligente foi desenvolvido para tornar um robô capaz de decidir, de forma autônoma, quais comportamentos emitir em função do estado emocional humano. Para isso, a primeira contribuição deste trabalho é uma arquitetura denominada Social Robotics Deep Q-Network (SocialDQN) é proposta para ensinar robôs sociais a se comportarem e interagirem adequadamente com humanos com base em sinais sociais, especialmente em estados emocionais humanos. Ela oferece um arcabouço para a utilização de sinais sociais visando controlar as ações do robô e seu aprendizado é realizado por meio de Deep Reinforcement Learning(DRL). Uma segunda contribuição é o simulador SimDRLSR, que é o primeiro simulador a prover uma ferramenta para modelar humanos e seus comportamentos por meio de sinais sociais. O desenvolvimento e validação da rede SocialDQN foram realizados com o apoio desse simulador. Os resultados obtidos em diversos testes realizados em ambiente real demonstraram que o sistema aprendeu satisfatoriamente a maximizar as recompensas e, consequentemente, o robô se comportou de forma socialmente aceitável. (AU)

Processo FAPESP: 18/25782-5 - Interação de longa duração para aprendizado de comportamentos interativos utilizando deep reinforcement learning
Beneficiário:José Pedro Ribeiro Belo
Modalidade de apoio: Bolsas no Brasil - Doutorado