Busca avançada
Ano de início
Entree


Causalidade de Granger entre grafos no domínio da frequência

Texto completo
Autor(es):
Gustavo Pinto Vilela
Número total de Autores: 1
Tipo de documento: Tese de Doutorado
Imprenta: São Paulo.
Instituição: Universidade de São Paulo (USP). Instituto de Matemática e Estatística (IME/SBI)
Data de defesa:
Orientador: André Fujita
Resumo

Diversos sistemas naturais, como a malha aeroviária, interações proteína-proteína, regulação genética, conectividade funcional do cérebro e relações sociais podem sem modeladas por grafos onde os vértices são as entidades sob estudo e as arestas representam quais pares de entidades se relacionam. Também é sabido que muitos desses sistemas são modulares, ou seja, podem ser particionados de alguma maneira em sub-sistemas que interagem ou se influenciam. No entanto, do ponto de vista estatístico-computacional, pouco se é conhecido sobre métodos de análise estatística em grafos. Por exemplo, como identificar que um grafo 'causa' outro grafo? Dentro deste contexto, propomos um método de identificação de causalidade de Granger entre séries temporais de grafos no domínio da frequência. Este método se baseia tanto na análise espectral dos grafos aleatórios como também no método da Coerência Parcial Direcionada. Apresentamos o modelo, uma forma de estimação, um teste estatístico e resultados sobre o efetivo controle da taxa de falsos positivos, bem como seu poder esta- tístico em simulações de Monte Carlo. Finalmente, ilustramos uma aplicação do método em dados de eletrocorticografia coletados de um macaco sob estado de alerta e posteriormente em estado anestésico. (AU)

Processo FAPESP: 12/12320-7 - Causalidade de Granger entre grupos de séries temporais no domínio da frequência com aplicações em neurociência
Beneficiário:Gustavo Pinto Vilela
Modalidade de apoio: Bolsas no Brasil - Doutorado Direto