Busca avançada
Ano de início
Entree


Programação dinâmica simbólica aproximada e assíncrona para processos de decisão markovianos com variáveis contínuas

Texto completo
Autor(es):
Luis Gustavo Rocha Vianna
Número total de Autores: 1
Tipo de documento: Dissertação de Mestrado
Imprenta: São Paulo.
Instituição: Universidade de São Paulo (USP). Instituto de Matemática e Estatística (IME/SBI)
Data de defesa:
Orientador: Leliane Nunes de Barros
Resumo

Este trabalho trata o problema de planejamento em inteligência artificial, mais especificamente, planejamento probabilístico com variáveis contínuas. Aplicações de planejamento em inteligência artificial, em geral, envolvem recursos contínuos, portanto é necessário que os agentes raciocinem com modelos que representem variáveis contínuas. Uma solução exata, recentemente proposta, para uma classe de problemas de planejamento probabilístico é a programação dinâmica simbólica - PDS, que é capaz de resolver de maneira eficiente problemas com variáveis discretas e contínuas, utilizando manipulação simbólica. Essa técnica resolve problemas com variáveis contínuas manipulando expressões definidas por casos que envolvem essas variáveis para obter a expressão da solução exata. No entanto, a manipulação envolve um aumento no número de casos usados na expressão, de forma que a representação exata das soluções pode se tornar intratavelmente custosa. Neste trabalho, pretendemos adaptar a PDS com uma técnica de aproximação que permite controlar o crescimento da complexidade das expressões em troca de um pequeno erro em seus valores. A maneira como pretendemos simplificar as expressões é baseada em reduzir o número de casos numa expressão simbólica, o que é feito unindo regiões de casos diferentes que apresentam valores próximos. Além disso, a eficiência da PDS pode ser melhorada modificando qual o cálculo usado para obter a expressão da solução. Uma forma de evitar cálculos desnecessários é utilizar a informação do estado inicial e fazer uma busca heurística a partir dele, restringindo a região de valores para os quais precisamos da solução ótima. Assim, pretendemos criar dois novos algoritmos que usam a manipulação simbólica das expressões com variáveis contínuas, adicionando componentes de técnicas recentes para planejamento probabilístico discreto. (AU)

Processo FAPESP: 11/16962-0 - Programação Dinâmica em Tempo Real e Simulação de Monte Carlo para Planejamento Probabilístico
Beneficiário:Luis Gustavo Rocha Vianna
Modalidade de apoio: Bolsas no Brasil - Mestrado