Busca avançada
Ano de início
Entree


Predição de escolhas de baixa capacidade cognitiva baseada na variabilidade da frequência cardíaca

Texto completo
Autor(es):
Mario Muramatsu Júnior
Número total de Autores: 1
Tipo de documento: Dissertação de Mestrado
Imprenta: São Paulo.
Instituição: Universidade de São Paulo (USP). Instituto de Matemática e Estatística (IME/SBI)
Data de defesa:
Membros da banca:
André Fujita; Katerina Lukasova; João Paulo Papa
Orientador: André Fujita
Resumo

A tomada de decisões é um aspecto fundamental da vida cotidiana. Ela ocorre em vários contextos, desde a escolha do que comer no café da manhã até decisões complexas, como escolhas de carreira ou estratégias de negócios. Nesse contexto, uma pergunta natural é: poderíamos prever a decisão de uma pessoa? Para ajudar a responder a essa pergunta, levantamos a hipótese de que o estado do corpo é fundamental para algumas classes de tomada de decisão, por exemplo, decisões de raciocínio rápido e intuitivo realizadas pelo Sistema 1 (modelo de Kahneman). Para medir o estado fisiológico do corpo, propomos usar a interocepçào. É interessante notar que podemos medir a interocepção por meio da variabilidade da frequência cardíaca. Projetamos um experimento em que uma pessoa assiste a um trailer e decide se quer ou não assistir ao filme para testar nossa hipótese. Utilizando um modelo de machine learning, demonstramos que a previsão da escolha de uma pessoa é mais eficaz quando se combina a variabilidade da frequência cardíaca com medidas emocionais, em comparação ao uso isolado das emoções ou das preferências de género do filme, alcançando uma taxa de acurácia de 73%. Esses resultados evidencian1 que o estado fisiológico do corpo está associado ã tomada de decisões, as quais podem ser previstas com base nesses parâmetros com uma precisão aceitável. (AU)

Processo FAPESP: 21/05658-0 - Classificação de emoções baseado na variabilidade da frequência cardíaca
Beneficiário:Mario Muramatsu Junior
Modalidade de apoio: Bolsas no Brasil - Mestrado