Busca avançada
Ano de início
Entree


Detecção de situações anormais em caldeiras de recuperação química.

Texto completo
Autor(es):
Gustavo Matheus de Almeida
Número total de Autores: 1
Tipo de documento: Tese de Doutorado
Imprenta: São Paulo.
Instituição: Universidade de São Paulo (USP). Escola Politécnica (EP/BC)
Data de defesa:
Membros da banca:
Song Won Park; Luis Antonio Aguirre; Marcelo Cardoso; Claudio Augusto Oller do Nascimento; Fabio Violaro
Orientador: Song Won Park
Resumo

O desafio para a área de monitoramento de processos, em indústrias químicas, ainda é a etapa de detecção, com a necessidade de desenvolvimento de sistemas confiáveis. Pode-se resumir que um sistema é confiável, ao ser capaz de detectar as situações anormais, de modo precoce, e, ao mesmo tempo, de minimizar a geração de alarmes falsos. Ao se ter um sistema confiável, pode-se empregá-lo para auxiliar o operador, de fábricas, no processo de tomada de decisões. O objetivo deste estudo é apresentar uma metodologia, baseada na técnica, modelo oculto de Markov (HMM, acrônimo de ?Hidden Markov Model?), para se detectar situações anormais em caldeiras de recuperação química. As aplicações de maior sucesso de HMM são na área de reconhecimento de fala. Pode-se citar como aspectos positivos: o raciocínio probabilístico, a modelagem explícita, e a identificação a partir de dados históricos. Fez-se duas aplicações. O primeiro estudo de caso é no ?benchmark? de um sistema de evaporação múltiplo efeito de uma fábrica de produção de açúcar. Identificou-se um HMM, característico de operação normal, para se detectar cinco situações anormais no atuador responsável por regular o fluxo de xarope de açúcar para o primeiro evaporador. A detecção, para as três situações abruptas, é imediata, uma vez que o HMM foi capaz de detectar alterações, abruptas, no sinal da variável monitorada. Em relação às duas situações incipientes, foi possível detectá-las ainda em estágio inicial; ao ser o valor de f (vetor responsável por representar a intensidade de um evento anormal, com o tempo), no instante da detecção, próximo a zero, igual a 2,8% e 2,1%, respectivamente. O segundo estudo de caso é em uma caldeira de recuperação química, de uma fábrica de produção de celulose, no Brasil. O objetivo é monitorar o acúmulo de depósitos de cinzas sobre os equipamentos da sessão de transferência de calor convectivo, através de medições de perda de carga. Este é um dos principais desafios para se aumentar a eficiência operacional deste equipamento. Após a identificação de um HMM característico de perda de carga alta, pôde-se verificar a sua capacidade de informar o estado atual e, por consequência, a tendência do sistema, de modo similar à um preditor. Pôde-se demonstrar também a utilidade de se definir limites de controle, com o objetivo de se ter a informação sobre a distância entre o estado atual e os níveis de alarme de perda de carga. (AU)

Processo FAPESP: 03/00405-9 - Monitoramento de falhas em caldeira de recuperação e integração multi-agente de operação para produção mais limpa
Beneficiário:Gustavo Matheus de Almeida
Modalidade de apoio: Bolsas no Brasil - Doutorado