Advanced search
Start date
Betweenand


Detection of abnormal situations in chemical recovery boilers.

Full text
Author(s):
Gustavo Matheus de Almeida
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Escola Politécnica (EP/BC)
Defense date:
Examining board members:
Song Won Park; Luis Antonio Aguirre; Marcelo Cardoso; Claudio Augusto Oller do Nascimento; Fabio Violaro
Advisor: Song Won Park
Abstract

The greatest challenge faced by the area of process monitoring in chemical industries still resides in the fault detection task, which aims at developing reliable systems. One may say that a system is reliable if it is able to perform early fault detection and, at the same time, to reduce the generation of false alarms. Once there is a reliable system available, it can be employed to help operators, in factories, in the decisionmaking process. The aim of this study is presenting a methodology, based on the Hidden Markov Model (HMM) technique, suggesting its use in the detection of abnormal situations in chemical recovery boilers. The most successful applications of HMM are in the area of speech recognition. Some of its advantages are: probabilistic reasoning, explicit modeling and the identification based on process history data. This study discusses two applications. The first one is on a benchmark of a multiple evaporation system in a sugar factory. A HMM representative of the normal operation was identified, in order to detect five abnormal situations at the actuator responsible for controlling the syrup flow to the first evaporator. The detection result for the three abrupt situations was immediate, since the HMM was capable of detecting the statistical changes on the signal of the monitored variable as soon as they occurred. Regarding to the two incipient situations, the detection was done at an early stage. For both events, the value of vector f (responsible for representing the strength of an abnormal event over time), at the time it occurred, was near zero, equal to 2.8 and 2.1%, respectively. The second case study deals with the application of HMM in a chemical recovery boiler, belonging to a cellulose mill, in Brazil. The aim is monitoring the accumulation of ash deposits over the equipments of the convective heat transfer section, through pressure drop measures. This is one of the main challenges to be overcome nowadays, bearing in mind the interest that exists in increasing the operational efficiency of this equipment. Initially, a HMM for high values of pressure drop was identified. With this model, it was possible to check its capacity to inform the current state, and consequently, the tendency of the system (similarly as a predictor). It was also possible to show the utility of defining control limits, in order to inform the operator the relative distance between the current state of the system and the alarm levels of pressure drop. (AU)