Busca avançada
Ano de início
Entree


Geração genética de bases de conhecimento fuzzy: novas perspectivas

Texto completo
Autor(es):
Marcos Evandro Cintra
Número total de Autores: 1
Tipo de documento: Tese de Doutorado
Imprenta: São Carlos.
Instituição: Universidade de São Paulo (USP). Instituto de Ciências Matemáticas e de Computação (ICMC/SB)
Data de defesa:
Membros da banca:
Maria Carolina Monard; Heloisa de Arruda Camargo; Nelson Francisco Favilla Ebecken; Fernando Antonio Campos Gomide; Marley Maria Bernardes Rebuzzi Vellasco
Orientador: Maria Carolina Monard; Heloisa de Arruda Camargo
Resumo

Este trabalho foca na geração genética de sistemas fuzzy. Uma das principais contribuições deste trabalho é a proposta do método FCA-BASED, que gera o espaço de busca genético usando a teoria de análise de conceitos formais por meio da extração de regras dos dados. Os resultados da avaliação experimental do método FCA-BASED demonstram sua robustez. O método FCABASED também produz um bom trade-off entre acurácia e interpretabilidade dos modelos gerados. Além disso, o método FCA-BASED apresenta melhorias em relação ao método DOC-BASED, uma abordagem proposta anteriormente. Essas melhorias estão relacionadas à redução do custo computacional para a geração do espaço de busca genético. Para ser capaz de trabalhar com conjuntos de dados de alta dimensão, foi também proposto o método FUZZYDT, uma versão fuzzy da clássica árvore de decisão C4.5. FUZZYDT é um método altamente escalável que apresenta baixo custo computacional e acurácia competitiva. Devido a essas características, o FUZZYDT é usado nesse trabalho como um método baseline para a avaliação experimental e comparações de outros métodos de classificação, fuzzy e clássicos. Também está incluido nesse trabalho a aplicação do método FUZZYDT em um problema do mundo real, o alerta da doença da ferrugem cafeeira em plantações brasileiras. Além disso, esse trabalho investiga a tarefa de seleção de atributos como forma de atacar o problema da dimensionalidade de sistemas fuzzy. Para esse fim, foi proposto o método FUZZYWRAPPER, uma abordagem baseada em wrapper que seleciona atributos levando em consideração as informações relevantes sobre a fuzificação dos atributos durante o processo de seleção. Esse trabalho também investiga a construção automática de bases de dados fuzzy, incluindo a proposta do método FUZZYDBD, que estima o número de conjuntos fuzzy que define todos os atributos de um conjunto de dados e distribui os conjuntos fuzzy proporcionalmente nos domínios dos atributos. Uma versão modificada do método FUZZYDBD, o método FUZZYDBD-II, também é proposta nesse trabalho. O método FUZZYDBD-II define números independentes de conjuntos fuzzy para cada atributo de um conjunto de dados por meio de funções de estimação (AU)

Processo FAPESP: 07/05390-0 - Geração de bases de conhecimento fuzzy utilizando o paradigma genético de aprendizado: novas perspectivas
Beneficiário:Marcos Evandro Cintra
Modalidade de apoio: Bolsas no Brasil - Doutorado