Busca avançada
Ano de início
Entree


Modelagem de séries temporais por meio da decomposição e análise de influências estocásticas e determinísticas

Texto completo
Autor(es):
Ricardo Araújo Rios
Número total de Autores: 1
Tipo de documento: Tese de Doutorado
Imprenta: São Carlos.
Instituição: Universidade de São Paulo (USP). Instituto de Ciências Matemáticas e de Computação (ICMC/SB)
Data de defesa:
Membros da banca:
Rodrigo Fernandes de Mello; Moacir Pereira Ponti Junior; Ivan Nunes da Silva; Diogo Coutinho Soriano; Guilherme Pimentel Telles
Orientador: Rodrigo Fernandes de Mello
Resumo

Esta tese apresenta um estudo sobre análise de séries temporais, a qual foi conduzida baseada na seguinte hipótese: séries temporais influenciadas por ruído aditivo podem ser decompostas em componentes estocásticos e determinísticos que ao serem modelados individualmente permitem obter um modelo híbrido de maior acurácia. Essa hipótese foi confirmada em duas etapas. Na primeira, desenvolveu-se uma análise formal usando o teorema de amostragem proposto por Nyquist-Shannon, provando que IMFs (Intrinsic Mode Functions) extraídas pelo método EMD (Empirical Mode Decomposition) podem ser combinadas de acordo com suas intensidades de frequência para formar os componentes estocásticos e determinísticos. Considerando essa prova, duas abordagens de decomposição de séries foram desenvolvidas e avaliadas em aplicações sintéticas e reais. Resultados experimentais confirmaram a importância de decompor séries temporais e modelar seus componentes estocásticos e determinísticos, provando a segunda parte da hipótese. Além disso, notou-se que a análise individual desses componentes possibilita detectar padrões e extrair importantes informações implícitas em séries temporais. Essa tese apresenta ainda duas novas medidas. A primeira é usada para avaliar a acurácia de modelos utilizados para predizer observações. A principal vantagem dessa medida em relação às existentes é a possibilidade de avaliar os valores individuais de predição e o comportamento global entre as observações preditas e experadas. A segunda medida permite avaliar a influência dos componentes estocásticos e determinísticos sobre as séries temporais. Finalmente, essa tese apresenta ainda resultados obtidos por meio de uma revisão sistemática da literatura, a qual coletou importantes trabalhos relacionados, e dois novos métodos para geração de dados substitutos, permitindo investigar a presença de processos Gaussianos lineares e não-lineares, independente da influência de comportamento não-estacionário (AU)

Processo FAPESP: 09/18293-9 - Uma Abordagem Híbrida para Identificação e Modelagem de Componentes Estocásticos e Determinísticos presentes em Séries Temporais
Beneficiário:Ricardo Araújo Rios
Modalidade de apoio: Bolsas no Brasil - Doutorado