Resumo
O projeto de pesquisa será dedicado ao estudo de propriedades geométricas e topológicas de espaços homogêneos de grupos de laços, com ênfase nos espaços de "flags periódicos".
Universidade Estadual de Campinas (UNICAMP). Instituto de Matemática, Estatística e Computação Científica (IMECC) (Instituição Sede da última proposta de pesquisa) País de origem: Brasil
Possui graduação em Bacharelado em Matemática pela Universidade Estadual de Campinas (2010), mestrado em Matemática pela Universidade Estadual de Campinas (2013) e doutorado em Matemática pela Universidade Estadual de Campinas (2017). Atualmente é professor do magistério superior da Universidade Federal Fluminense. Tem experiência na área de Matemática, com ênfase em Teoria de Lie, atuando principalmente nos seguintes temas: schubert varieties e permutations. (Fonte: Currículo Lattes)
Matéria(s) publicada(s) na Agência FAPESP sobre o(a) pesquisador(a) |
Mais itensMenos itens |
TITULO |
Matéria(s) publicada(s) em Outras Mídias ( ): |
Mais itensMenos itens |
VEICULO: TITULO (DATA) |
VEICULO: TITULO (DATA) |
O projeto de pesquisa será dedicado ao estudo de propriedades geométricas e topológicas de espaços homogêneos de grupos de laços, com ênfase nos espaços de "flags periódicos".
O projeto consiste em estudar a topologia (homologia e co-homologia) de espaços homogêneos, através de suas decomposições celulares. Espera-se que ao final do projeto o bolsista adquira uma formação em teoria de Lie e topologia algébrica, uma vez que o programa proposto se encontra na fronteira dessas duas áreas. Espera-se também que o bolsista obtenha resultados originais,compatíveis com…
O objetivo deste projeto é obter resultados na direção de encontrar o anel de cohomologia integral de variedades flag reais. (AU)
2 | Bolsas no país concluídas |
1 | Bolsas no exterior concluídas |
3 | Todas as Bolsas |
Processos vinculados |