Visita ao Departamento de Matemática e Estatística da Universidade de São Paulo
Texto completo | |
Autor(es): |
Número total de Autores: 2
|
Afiliação do(s) autor(es): | [1] Univ Estadual Campinas, IMECC, BR-13083859 Campinas, SP - Brazil
[2] Univ Fed Minas Gerais, Inst Ciencias Exatas, Dept Matemat, BR-31270901 Belo Horizonte, MG - Brazil
Número total de Afiliações: 2
|
Tipo de documento: | Artigo Científico |
Fonte: | Linear Algebra and its Applications; v. 471, p. 469-499, APR 15 2015. |
Citações Web of Science: | 1 |
Resumo | |
Let F be an infinite field of characteristic different from two and E be the infinite dimensional Grassmann algebra over F. We consider the upper triangular matrix algebra UT2(E) with entries in E endowed with the Z(2)-grading inherited by the natural Z(2)-grading of E and we study its ideal of Z(2)-graded polynomial identities (T-Z2-ideal) and its relatively free algebra. In particular we show that the set of Z(2)-graded polynomial identities of UT2(E) does not depend on the characteristic of the field. Moreover we compute the Z(2)-graded Hilbert series of UT2(E) and its Z(2)-graded Gelfand-Kirillov dimension. (C) 2015 Elsevier Inc. All rights reserved. (AU) | |
Processo FAPESP: | 13/06752-4 - Cocaracteres e dimenção de Gelfand-Kirillov de PI-álgebras |
Beneficiário: | Lucio Centrone |
Modalidade de apoio: | Auxílio à Pesquisa - Regular |