Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

An immune-inspired, information-theoretic framework for blind inversion of Wiener systems

Texto completo
Autor(es):
Silva, Daniel G. [1, 2] ; Montalvao, Jugurta [3] ; Attux, Romis [2] ; Coradine, Luis C. [4]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Brasilia UnB, Dept Elect Engn ENE, Brasilia, DF - Brazil
[2] Univ Estadual Campinas, Lab Signal Proc Commun DSPCom, UNICAMP, Campinas, SP - Brazil
[3] Fed Univ Sergipe UFS, Dept Elect Engn, Sao Cristovao, SE - Brazil
[4] Fed Univ Alagoas UFAL, Inst Comp, Maceio, AL - Brazil
Número total de Afiliações: 4
Tipo de documento: Artigo Científico
Fonte: Signal Processing; v. 113, p. 18-31, AUG 2015.
Citações Web of Science: 3
Resumo

This work proposes a new approach to the blind inversion of Wiener systems. A Wiener system is composed of a linear time-invariant (LTI) sub-system followed by a memoryless nonlinear function. The goal is to recover the input signal by knowing just the output of the Wiener system, and the straightforward scheme to achieve this is called the Hammerstein system - apply a memoryless nonlinear mapping followed by a LTI subsystem to the output signal of the Wiener system. If the input of the Wiener system is originally iid and some mild conditions are satisfied, the inversion is possible. Based on this statement and the limitations of relevant previous works, a solution is proposed combining (i) immune-inspired optimization algorithms, (ii) information theory and (iii) IIR filters that yield a robust scheme with a relatively reduced risk of local convergence. Experimental results indicated a similar or superior performance of the new approach, in comparison with two other blind methodologies. (C) 2015 Elsevier B.V. All rights reserved. (AU)

Processo FAPESP: 13/11769-3 - Aprendizado de Máquina Baseado na Teoria da Informação: Novas Perspectivas em Separação de Sinais em Corpos Finitos e Inversão de Sistemas de Wiener
Beneficiário:Daniel Guerreiro e Silva
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado