Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Uncoupling, metabolic inhibition and induction of mitochondrial permeability transition in rat liver mitochondria caused by the major long-chain hydroxyl monocarboxylic fatty acids accumulating in LCHAD deficiency

Texto completo
Autor(es):
Hickmann, Fernanda Hermes [1] ; Cecatto, Cristiane [1] ; Kleemann, Daniele [1] ; Monteiro, Wagner Oliveira [1] ; Castilho, Roger Frigerio [2] ; Amaral, Alexandre Umpierrez [1] ; Wajner, Moacir [1, 3]
Número total de Autores: 7
Afiliação do(s) autor(es):
[1] Univ Fed Rio Grande do Sul, Inst Ciencias Basicas Saude, Dept Bioquim, BR-90035003 Porto Alegre, RS - Brazil
[2] Univ Estadual Campinas, Fac Ciencias Med, Dept Patol Clin, Campinas, SP - Brazil
[3] Hosp Clin Porto Alegre, Serv Genet Med, Porto Alegre, RS - Brazil
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS; v. 1847, n. 6-7, p. 620-628, JUN-JUL 2015.
Citações Web of Science: 8
Resumo

Patients with long-chain 3-hydroxy-acyl-CoA dehydrogenase (LCHAD) deficiency commonly present liver dysfunction whose pathogenesis is unknown. We studied the effects of long-chain 3-hydroxylated fatty acids (LCHFA) that accumulate in LCHAD deficiency on liver bioenergetics using mitochondrial preparations from young rats. We provide strong evidence that 3-hydroxytetradecanoic (3HTA) and 3-hydroxypalmitic (3HPA) acids, the monocarboxylic acids that are found at the highest tissue concentrations in this disorder, act as metabolic inhibitors and uncouplers of oxidative phosphorylation. These conclusions are based on the findings that these fatty acids decreased ADP-stimulated (state 3) and uncoupled respiration, mitochondrial membrane potential and NAD(P)H content, and, in contrast, increased resting (state 4) respiration. We also verified that 3HTA and 3HPA markedly reduced Ca2+ retention capacity and induced swelling in Ca2+-loaded mitochondria. These effects were mediated by mitochondrial permeability transition (MPT) induction since they were totally prevented by the classical MPT inhibitors cyclosporin A and ADP, as well as by ruthenium red, a Ca2+ uptake blocker. Taken together, our data demonstrate that the major monocarboxylic LCHFA accumulating in LCHAD deficiency disrupt energy mitochondrial homeostasis in the liver. It is proposed that this pathomechanism may explain at least in part the hepatic alterations characteristic of the affected patients. (C) 2015 Elsevier B.V. All rights reserved. (AU)

Processo FAPESP: 11/50400-0 - Metabolismo energético, estado redox e funcionalidade mitocondrial na morte celular e em desordens cardiometabólicas e neurodegenerativas
Beneficiário:Aníbal Eugênio Vercesi
Modalidade de apoio: Auxílio à Pesquisa - Temático