Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Artificial neural network associated to UV/Vis spectroscopy for monitoring bioreactions in biopharmaceutical processes

Texto completo
Autor(es):
Takahashi, Maria Beatriz [1] ; Leme, Jaci [2] ; Caricati, Celso Pereira [2] ; Tonso, Aldo [3] ; Fernandez Nunez, Eutimio Gustavo [1, 3] ; Rocha, Jose Celso [1]
Número total de Autores: 6
Afiliação do(s) autor(es):
[1] Univ Estadual Paulista, Dept Ciencias Biol, BR-19806900 Assis, SP - Brazil
[2] Inst Butantan, Lab Especial Pesquisa & Desenvolvimento Imunol Ve, BR-05503900 Sao Paulo, SP - Brazil
[3] Univ Sao Paulo, Escola Politecn, Dept Engn Quim, Lab Celulas Animais, BR-05503900 Sao Paulo, SP - Brazil
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: Bioprocess and Biosystems Engineering; v. 38, n. 6, p. 1045-1054, JUN 2015.
Citações Web of Science: 9
Resumo

Currently, mammalian cells are the most utilized hosts for biopharmaceutical production. The culture media for these cell lines include commonly in their composition a pH indicator. Spectroscopic techniques are used for biopharmaceutical process monitoring, among them, UV-Vis spectroscopy has found scarce applications. This work aimed to define artificial neural networks architecture and fit its parameters to predict some nutrients and metabolites, as well as viable cell concentration based on UV-Vis spectral data of mammalian cell bioprocess using phenol red in culture medium. The BHK-21 cell line was used as a mammalian cell model. Off-line spectra of supernatant samples taken from batches performed at different dissolved oxygen concentrations in two bioreactor configurations and with two pH control strategies were used to define two artificial neural networks. According to absolute errors, glutamine (0.13 +/- A 0.14 mM), glutamate (0.02 +/- A 0.02 mM), glucose (1.11 +/- A 1.70 mM), lactate (0.84 +/- A 0.68 mM) and viable cell concentrations (1.89 10(5) +/- A 1.90 10(5) cell/mL) were suitably predicted. The prediction error averages for monitored variables were lower than those previously reported using different spectroscopic techniques in combination with partial least squares or artificial neural network. The present work allows for UV-VIS sensor development, and decreases cost related to nutrients and metabolite quantifications. (AU)

Processo FAPESP: 10/52521-6 - Producao de glicoproteinas da raiva atraves do cultivo de celulas bhk-21 em biorreatores usando sistema de expressao semliki forest virus (sfv).
Beneficiário:Eutimio Gustavo Fernández Núñez
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado