Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Comparison between the numerical solutions and the Thomas-Fermi approximation for atomic-molecular Bose-Einstein condensates

Texto completo
Autor(es):
Santos, Leonardo S. F. [1] ; Pires, Marcelo O. C. [2] ; Giugno, Davi [3]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Fed Sao Paulo, Dept Ciencias Exatas & Terra, BR-09972270 Diadema, SP - Brazil
[2] Univ Fed ABC, Ctr Ciencias Nat & Humanas, BR-09210170 Santo Andre, SP - Brazil
[3] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, SP - Brazil
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: EUROPEAN PHYSICAL JOURNAL D; v. 69, n. 3 MAR 3 2015.
Citações Web of Science: 0
Resumo

We study the stationary solution of an atomic Bose-Einstein condensate coupled coherently to a molecular condensate with both repulsive and attractive interspecies interactions confined in an isotropic harmonic trap. We use the Thomas-Fermi approximation and find four kinds of analytical solution for the cases. These analytical solutions are adopted as trial function for the diffusive numerical solution of the Gross-Pitaevskii equations. For the repulsive interspecies interaction, the case in which the atomic and molecular wavefunctions are out-phase, the densities have similar profiles for both methods, however, the case where the wavefunctions are in-phase, there are considerable difference between the density profiles. For the attractive interspecies interaction, there are two cases in the Thomas-Fermi approximation where the wavefunctions are in-phase. One of them has numerical solution that agree with the approximation and the other does not have corresponding numerical solution. (AU)

Processo FAPESP: 99/06461-0 - Aproximacoes de variacionais para a coexistencia de condensados de bose atomicos e moleculares.
Beneficiário:Leonardo Sioufi Fagundes dos Santos
Modalidade de apoio: Bolsas no Brasil - Mestrado