Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

BOUNDARY LAYERS IN PRESSURE-DRIVEN FLOW IN SMECTIC A LIQUID CRYSTALS

Texto completo
Autor(es):
Stewart, I. W. [1] ; Vynnycky, M. [2] ; McKee, S. [1] ; Tome, M. F. [3]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Strathclyde, Dept Math & Stat, Glasgow G1 1XH, Lanark - Scotland
[2] Royal Inst Technol KTH, Dept Mat Sci & Engn, Div Casting Met, SE-10044 Stockholm - Sweden
[3] Univ Sao Paulo, Dept Matemat Aplicada & Estat, Inst Ciencias Matemat & Comp, Sao Carlos, SP - Brazil
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: SIAM JOURNAL ON APPLIED MATHEMATICS; v. 75, n. 4, p. 1817-1851, 2015.
Citações Web of Science: 2
Resumo

This article examines the steady flow of a smectic A liquid crystal sample that is initially aligned in a classical ``bookshelf{''} geometry confined between parallel plates and is then subjected to a lateral pressure gradient which is perpendicular to the initial local smectic layer arrangement. The nonlinear dynamic equations are derived. These equations can be linearized and solved exactly to reveal two characteristic length scales that can be identified in terms of the material parameters and reflect the boundary layer behavior of the velocity and the director and smectic layer normal orientations. The asymptotic properties of the nonlinear equations are then investigated to find that these length scales apparently manifest themselves in various aspects of the solutions to the nonlinear steady state equations, especially in the separation between the orientations of the director and smectic layer normal. Non-Newtonian plug-like flow occurs and the solutions for the director profile and smectic layer normal share features identified elsewhere in static liquid crystal configurations. Comparisons with numerical solutions of the nonlinear equations are also made. (AU)

Processo FAPESP: 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria
Beneficiário:Francisco Louzada Neto
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs