Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Higher-order surface treatment for discontinuous Galerkin methods with applications to aerodynamics

Texto completo
Autor(es):
Silveira, A. S. [1] ; Moura, R. C. [1] ; Silva, A. F. C. [1] ; Ortega, M. A. [1]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Technol Inst Aeronaut ITA, Sao Jose Dos Campos - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: International Journal for Numerical Methods in Fluids; v. 79, n. 7, p. 323-342, NOV 10 2015.
Citações Web of Science: 2
Resumo

When dealing with high-order numerical methods, an adequate treatment of curved surfaces is required not only to guarantee that the expected high-order is maintained in the vicinity of surfaces but also to avoid steady-state convergence issues. Among the variety of high-order surface treatment techniques that have been proposed, the ones employing NURBS (non-uniform rational B-splines) to describe curved surfaces can be considered superior both in terms of accuracy and compatibility with computer-aided design softwares. The current study describes in detail the integration of NURBS-based geometry description in a high-order solver based on the discontinuous Galerkin formulation. Particularly, this work also discusses how and why NURBS curves of very high order can be employed within standard NURBS-based boundary treatment techniques to yield reduced implementation complexity and computational overhead. Theoretical estimates are provided along with numerical experiments in order to support the proposed approach. Minding engineering applications in the context of compressible aerodynamics, additional simulations are addressed as numerical examples to illustrate the advantages of using higher-order NURBS in practical situations. Copyright (c) 2015John Wiley \& Sons, Ltd. (AU)

Processo FAPESP: 12/16973-5 - Soluções numéricas de problemas complexos de dinâmica dos fluidos por meio de técnicas espectrais tipo Galerkin Descontínuo
Beneficiário:Marcos Aurélio Ortega
Modalidade de apoio: Auxílio à Pesquisa - Regular