Autor(es): |
Número total de Autores: 2
|
Afiliação do(s) autor(es): | [1] IGCE Unesp Univ Estadual Paulista, Dept Matemat, Caixa Postal 178, BR-13500230 Rio Claro - Brazil
[2] Natl Acad Sci Ukraine, Inst Math, Kiev - Ukraine
Número total de Afiliações: 2
|
Tipo de documento: | Artigo Científico |
Fonte: | TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS; v. 46, n. 2, p. 697-715, DEC 2015. |
Citações Web of Science: | 0 |
Resumo | |
In this paper we study functions and vector fields with isolated singularities on a C(CPn)-singular manifold. In general, a C(CPn)-singular manifold is obtained from a smooth (2n+1) -manifold with boundary which is a disjoint union of complex projective spaces CPn U center dot center dot center dot UCPn and subsequent capture of the cone over each component CPn of the boundary. We calculate the Euler characteristic of a compact C(CPn)-singular manifold M2n+1 with finite isolated singular points. We also prove a version of the Poincare Hopf Index Theorem for an almost smooth vector field with finite number of zeros on a C(CPn)-singular manifold. (AU) | |
Processo FAPESP: | 12/24454-8 - Topologia algébrica, geométrica e diferencial |
Beneficiário: | Daciberg Lima Gonçalves |
Modalidade de apoio: | Auxílio à Pesquisa - Temático |