Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Feature Detection for Vehicle Localization in Urban Environments Using a Multilayer LIDAR

Texto completo
Autor(es):
Hata, Alberto Y. [1] ; Wolf, Denis F. [1]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Mobile Robot Lab, BR-13560970 Sao Carlos, SP - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS; v. 17, n. 2, p. 420-429, FEB 2016.
Citações Web of Science: 30
Resumo

Localization is an important component of autonomous vehicles, as it enables the accomplishment of tasks, such as path planning and navigation. Although vehicle position can be obtained by GNSS devices, they are susceptible to errors and satellite signal unavailability in urban scenarios. Several map- aided localization solution methods have been proposed in the literature, but mostly for indoor environments. Maps used for localization store relevant environmental features that are extracted by a detection method. However, many feature detection methods do not consider the presence of dynamic obstacles or occlusions in the environment, which can impair the localization performance. In order to detect curbs even in occluding scenes, we developed a method based on ring compression analysis and least trimmed squares. For road marking detection, we developed a modified version of the Otsu thresholding method to segment road painting from road surfaces. Finally, the feature detection methods were integrated with a Monte Carlo localization method to estimate the vehicle position. Experimental tests in urban streets have been used to validate the proposed approach with favorable results. (AU)

Processo FAPESP: 12/02354-1 - Localização de veículos autônomos em ambientes urbanos utilizando mapas métricos contínuos
Beneficiário:Alberto Yukinobu Hata
Modalidade de apoio: Bolsas no Brasil - Doutorado
Processo FAPESP: 14/09096-3 - Vehicle localization using Gaussian process Occupancy MAPS
Beneficiário:Alberto Yukinobu Hata
Modalidade de apoio: Bolsas no Exterior - Estágio de Pesquisa - Doutorado